
VeyMont: Choreography-Based Generation of
Correct Concurrent Programs with Shared

Memory⋆

Robert Rubbens(�)

, Petra van den Bos

, and Marieke Huisman

Formal Methods and Tools, University of Twente, Enschede, The Netherlands
{r.b.rubbens,p.vandenbos,m.huisman}@utwente.nl

Abstract. In the VeyMont tool, choreographies can be used to specify
concurrent programs using a sequential format. To support choreography-
based development, VeyMont verifies a given choreography for functional
correctness and memory safety, and subsequently generates a correct con-
current program. However, the initial version of VeyMont did not support
programs with shared memory. This paper shows how we overcome this
limitation, by adding support for ownership annotations to VeyMont.
Moreover, we also adapted the concurrent program generation, so that
it does not only generate code, but also annotations. As a result, fur-
ther changes and optimizations of the concurrent program can directly
be verified. We demonstrate the extended capabilities of VeyMont on
illustrative case studies.

Keywords: Deductive verification · Choreographies · Concurrent pro-
grams

1 Introduction

In program verification, auto-active verifiers prove correctness of programs au-
tomatically, with respect to a given specification. Writing specifications is non-
trivial already in a sequential setting, and concurrency makes it even more
challenging, as a concurrent program has a combinatorial number of interleav-
ings to be considered. VeyMont [7] addressed this problem by combining chore-
ographies [18], for specifying (concurrent) protocols, with deductive verification.
VeyMont generates implementations for choreographies, which can be verified by
using the VerCors verifier for concurrent software [3] as back-end. The choreogra-
phies of VeyMont allow specifying a concurrent program in a sequential format
to ease verification, and then to generate the correct concurrent program.

In its purest form, a choreography [18] describes a sequence of message ex-
changes between participants of the choreography, called endpoints. The or-
dering of messages is partially fixed: an endpoint skips exchanges it does not
participate in. Choreographies are deadlock free on the message level, meaning
no endpoint will be stuck waiting for a message that will never be sent. Note
⋆ Supported by the NWO VICI 639.023.710 Mercedes project.

https://orcid.org/0000-0002-5638-5945
https://orcid.org/0000-0002-9212-1525
https://orcid.org/0000-0003-4467-072X

2 R. Rubbens et al.

1 choreography incrField() {
2 endpoint a = Role();
3 endpoint b = Role();
4
5 requires a.x > 0;
6 ensures a.x == b.x;
7 ensures a.x > 2;
8 run {
9 a.x := a.x + 1;

10 communicate a.x -> b.x;
11 b.x := b.x + 1;
12 communicate b.x -> a.x;
13 }
14 }

(a) A shared field is simulated by
broadcasting intermediate results be-
tween a and b.

1 choreography incrStore(Store s) {
2 endpoint a = Role(s);
3 endpoint b = Role(null);
4
5 requires a.s.x > 0;
6 ensures a.s.x > 2;
7 run {
8 a.s.x := a.s.x + 1;
9 // Store reference sent to b
10 communicate a.s -> b.s;
11 b.s.x := b.s.x + 1;
12 // Store reference sent to a
13 communicate b.s -> a.s;
14 }
15 }

(b) A shared field is incremented by both a
and b. The messages function as barriers.

Fig. 1: Two choreographies where endpoints a and b each increment a value.

that in choreographies with shared memory and local actions, as presented in
this work, deadlock in general is still possible. This is because endpoints can take
local actions, such as acquiring locks, which might deadlock. Choreographies also
guarantee that messages are well typed, meaning an endpoint will never receive
an int when they are expecting a float. Finally, for each endpoint a specialized
implementation can be generated. When these implementations are executed in
parallel, messages are exchanged between processes as specified in the chore-
ography. While similar, choreographies differ from session types [13]: a session
type can only be used to type check implementations that are written by a user,
choreographies allow automatic derivation of an implementation for each of its
endpoints.

In VeyMont [7], a choreography specifies a concurrent program, such that
its implementation can be generated. VeyMont supports verification of memory
safety and functional correctness of these choreographies, which allows reason-
ing about e.g. program state properties. Such reasoning is not supported for
the messages of traditional choreographies, which do not have local actions and
shared memory. To support this verification, VeyMont requires users to annotate
choreographies with contracts for functional correctness, e.g. pre- and postcon-
ditions. Additionally, it generates verification annotations for memory safety: in
particular permissions to specify ownership of heap elements, like objects and
their fields. The reasoning happens on the level of the choreography, and is pre-
served in the generated implementation [15]. VerCors [1] is used as the back-end
verification engine for VeyMont.

An example VeyMont choreography is given in Fig. 1a. It defines two end-
points a and b of class Role (lines 2 and 3). The class Role has a field x of type
int. The run declaration defines actions (line 8): a increments a.x, and then
sends the value stored in a.x to b. Then b increments b.x, and sends it back to
a. The precondition of run (line 5) is that a.x is more than 0. This is an example

VeyMont: Correct Concurrent Shared-Memory Programs 3

of a constraint on input data, and necessary to prove the postconditions: that
a.x and b.x are equal (line 6), and that the value of a.x is more than 2 (line 7).

In this paper we extend VeyMont to address two limitations of the origi-
nal implementation. The first limitation is the single-owner policy, where each
endpoint owns all the fields reachable from it. For example, in Fig. 1a, a owns
its only field a.x, while b owns b.x, in any program state, and sharing is only
supported via duplicated values. This choice allowed to automatically generate
permission annotations for verifying memory safety with the VerCors back-end.

Unfortunately, the single-owner policy excludes concurrent programs that
share memory between threads. This is problematic, because sharing memory is
an important pattern in many concurrent programs. Also, choreographies with
a single-owner policy do not scale well for more endpoints, and for large data
structures the overhead of duplication is large. Finally, the single-owner policy
disallows sharing read-only data structures. What we instead wish to have is
shared memory as used in Fig. 1b. The choreography is the same as Fig. 1a,
except that endpoint a is initialized with a reference to a store s, which is used to
update the field x within. This reference is then communicated between a and b,
instead of the literal integer. While the choreography still includes communicate
statements to prevent data races, access to x is now shared. In this paper, we
extend VeyMont with transfer of ownership using communicate statements, i.e.
at line 10 of Fig. 1b, ownership of s should be transferred from a to b. It is
safe to transfer ownership here, because the receiver waits for the message of the
sender. This implied synchronization points justifies permission transfers.

A second limitation of the original VeyMont [7] is that the verification an-
notations of a choreography are not preserved in the generated implementation.
Consequently, the verification properties cannot be directly verified on the im-
plementation. Since the properties have not been proven to hold for any variant
of the program, an adapted and verified implementation can only be obtained
by adapting and verifying the choreography, and then generating the implemen-
tation. From an engineering viewpoint, and especially for small changes, this
may cause unnecessary overhead. Also, it is risky to change the generated im-
plementation, e.g. for performance, as this might introduce bugs that cannot be
detected by verification. Additionally, the lack of annotations in the generated
implementation also prevents application of tools that further process & lever-
age annotations. One example of such a tool is Alpinist [22], which is a GPU
program optimizer that uses annotations to check applicability of optimizations
and preserves annotations in the output program.

Furthermore, because a generated implementation without annotations can-
not be verified, bugs in the code generator of VeyMont are not spotted. In this
work, we increase confidence in the generated implementation by making it veri-
fiable with VerCors. This allows the user to establish correctness of the generated
implementation without depending on the implementation details of VeyMont.

Contributions. In this work we present an extension of VeyMont that supports
choreographies with shared memory and preserves verification annotations in the
generated implementations. VeyMont supports fine-grained and dynamic own-

4 R. Rubbens et al.

ership via endpoint annotations. In particular, access to shared memory can be
exchanged between endpoints by annotating a communicate statement with per-
missions. By extending this approach to expressions and statements, VeyMont
can generate implementations with verification annotations. We demonstrate the
extended VeyMont through three consecutive improvements of the Tic-Tac-Toe
case study, as presented in the original VeyMont tool paper [7]. These case stud-
ies show that even in simple programs, complicated properties can emerge. We
provide the full annotated programs and tool implementation in the artifact [21].

Paper Structure. After preliminaries (Section 2), we describe the workflow and
choreographic language of VeyMont, and introduce our approach with an exam-
ple (Section 3). Then, we elaborate how choreographies are verified (Section 4),
and how the concurrent program with verification annotations is generated (Sec-
tion 5). After, we discuss our case studies (Section 6), and related work (Sec-
tion 7). Finally, we conclude and discuss future work (Section 8).

2 Deductive Verification with VerCors

We introduce Prototypical Verification Language (PVL), the internal language
of VerCors, because we used it to define the choreographic language of VeyMont.
Also we introduce permission-based separation logic (PBSL), which is part of
PVL, and is leveraged to verify choreographies. VerCors can also verify other lan-
guages, such as Java and C. We refer to [1] for more information about VerCors.

PVL is an object-oriented language. It supports OOP concepts like classes,
methods and fields. PVL programs are imperative, with mutable local vari-
ables, if and while statements. Additionally, PVL programs may have contracts
and assertions. Method contracts have pre- and postconditions, specified using
requires and ensures. Assertions on expressions can be placed in a method
body using the assert keyword. For examples, see lines 5, 6 and 11 of Fig. 4.
More information on PVL is available at [1,25].

Permission-based Separation Logic. VerCors is able to verify functional correct-
ness, e.g. via pre- and postconditions and loop invariants. It also verifies memory
safety and data-race freedom using permission-based separation logic [6]. Per-
missions specify which fields are writable or readable using the following syntax:
Perm(o.x, f). Here, o is an object, x a field, and f a fractional permission
amount 0 < f ≤ 1. Fraction f = 1 specifies read and write access. Fraction
0 < f < 1 specifies only read access. Fields that are not specified with Perm are
inaccessible. Permissions can be combined in an expression using the separating
conjunction ** operator, such that the sum of fractions never exceeds 1 for a
field. Permissions can be split and combined, e.g. Perm(o.f, 1) can be split into
Perm(o.f, 1\2) ** Perm(o.f, 1\2). Note the use of “\” to indicate fractional
division, as opposed to integer division using “/”. Expressions in PBSL are “self-
framing”, which means that an expression must specify a permission for a field
before reading it. For example, Perm(x.f, 1) ** x.f == 0 is self-framing.

VeyMont: Correct Concurrent Shared-Memory Programs 5

VeyMont

Choreography
with

annotations
Encode VerCors

Projection
Java/PVL

implementation
with annotations

VerCors

Execute

Fig. 2: Workflow for using VeyMont choreographies

VerCors also supports predicates, which allow grouping expressions, includ-
ing permissions, under an opaque name. They are defined using the syntax:
resource P(Ta) = A, where P is the predicate name, Ta is a sequence of typed
parameters, and A is the predicate body. As predicates are opaque, VerCors re-
quires annotations that specify when a predicate body should be exchanged for
a predicate name and its arguments, and vice versa. This is done with the fold
and unfold statements. More specifically, if the expression A holds in the cur-
rent verification state, then fold P(e) will cause all permissions in A to be
removed from the verification state. Then, the predicate P(e) is added to the
verification state. The unfold statement does the inverse: it removes P(e), and
adds A. See for example lines 7 and 8 of Fig. 5b. There is also \unfolding, which
is for use in expressions. It unfolds a predicate temporarily while evaluating an
expression, and folds it directly afterwards.

To mediate access to shared resources, PVL supports lock invariants, which
defines assertions only available by acquiring a lock [11]. A lock invariant is
declared on a class. By locking an object, the lock invariant is acquired, after
which the lock invariant of the object is added to the current verification state.
When unlocking the object, the lock invariant needs to be true in the current
verification state, and if so its assertions are removed from the state. A lock
invariant is declared at lines 1 to 5 of Fig. 8b.

3 VeyMont Workflow and Choreography Language

We now discuss the workflow and choreography language of VeyMont, including
the new features that we added to support shared memory.

3.1 VeyMont Workflow

The workflow for using VeyMont is shown in Fig. 2, and consists of 3 steps:
Step 1: Verify. When a choreography with annotations is input into VeyMont,

the semantics of the choreography is encoded (see Section 4), such that VerCors
can verify it. If verification fails, there is a problem with the choreography: either
it has a bug, or the contracts are not properly specified.

6 R. Rubbens et al.

⟨GlobalDecl⟩ ::= ⟨Class⟩
| ⟨Procedure⟩
| [⟨Contract⟩]

choreography ⟨Name⟩ (⟨Params⟩) {
⟨ChorDecl⟩*

}

⟨ChorDecl⟩ ::=
| endpoint ⟨Name⟩ = ⟨Name⟩(⟨Args⟩);
| [⟨Contract⟩] run { ⟨ChorStmt⟩* }
| ⟨Method⟩

⟨ChorStmt⟩ ::= · · ·
| [⟨Name⟩:] ⟨Expr⟩ . ⟨Name⟩ := ⟨Expr⟩;
| channel_invariant ⟨Expr⟩;

communicate [⟨Name⟩:] ⟨Expr⟩ -> [⟨Name⟩:] ⟨Expr⟩;

⟨Expr⟩ ::= · · ·
| Perm[⟨Name⟩](⟨Expr⟩, ⟨Expr⟩)
| (\endpoint ⟨Name⟩; ⟨Expr⟩)
| (\chor ⟨Expr⟩)
| \msg
| \receiver
| \sender

Fig. 3: VeyMont syntax in EBNF.

Step 2: Endpoint Projection. If verification succeeds, VeyMont applies end-
point projection on the choreography to generate an implementation for each
choreography endpoint, with annotations. Section 5 discusses the endpoint pro-
jection. VeyMont can generate both PVL and Java code.

Step 3: Use. The generated implementation can be used in two ways. First,
if Java code was generated, it can be executed. Second, for PVL code, it can be
verified with standalone VerCors. If standalone verification fails, there was either
a bug in the projection step, the choreography contains annotations that cannot
be projected (using \chor, see Section 3.2), or the user made changes to the
generated implementation that are incompatible with the current annotations.

3.2 Choreography Language

VeyMont extends the PVL language with syntax for defining choreographies.
This syntax extension is summarized informally in Fig. 3.

Global Declarations. VeyMont definitions coexist with other PVL definitions
such as classes. This way VeyMont programs can use procedures and types from
PVL. VeyMont adds a type of global declaration, the choreography. This is the
root definition for a VeyMont choreography. It consists of an optional contract,
a name, parameters, and zero or more choreography declarations. In a VeyMont
program, multiple choreographies can co-exist simultaneously.

Choreographic Declarations. A choreographic declaration is either an endpoint
declaration, a run declaration, or a method declaration. An endpoint declara-
tion defines an endpoint that participates in the choreography. Semantically this
corresponds to an object created with a constructor. An endpoint has a name,
a name of a PVL class, and a list of expressions as arguments for the construc-
tor. The run declaration consists of an optional contract, and a body consisting
of choreographic statements. Lastly, a regular PVL method definition is also a
ChorDecl, when its body consists of choreographic statements.

Choreographic Statements. There are two choreographic statements: choreo-
graphic assignment and the communicate statement. Choreographic assignment

VeyMont: Correct Concurrent Shared-Memory Programs 7

(:=) is similar to regular assignment, with the restriction that the value can
only be computed using state from one endpoint. It consist of an expression of
the object being assigned to, the target field, and an expression. Moreover, the
choreographic assignment can optionally be labeled with an endpoint name to
enable using a shared field from a different endpoint. The following verifies if a
has permission for both b.f and a.f: “a: b.f := a.f;”.

The communicate statement sends a value from one endpoint to another.
It requires a receiving endpoint and field, and a sending endpoint and ex-
pression. When endpoints are omitted, they are derived from the expressions,
e.g. a.x has a as the implicit endpoint. communicate statements are semi-
synchronous: sending is non-blocking, receiving is blocking. Annotations for own-
ership transfer of a communicate statement, as well as functional constraints over
the message, can be specified in a channel_invariant annotation. For example,
the annotation “channel_invariant \msg > 2; communicate a.x -> b.x;”
can be added to verify that the message sent from a.x to b.x is bigger than
2. Currently, only the choreographic expressions (explained in the next para-
graph) \msg, \sender, \receiver as well as global functions, are allowed within
channel_invariant. This is purely a limitation of the current implementation,
as channels can straightforwardly be extended with extra context.

Within a choreography declaration, also selected PVL statements are al-
lowed, such as assert, assume, if, while and blocks of statements.

Choreographic Expressions. There are six choreographic expressions. An end-
point name can be denoted within brackets at a permission annotation, to spec-
ify ownership by the endpoint of the stated permission. The keyword \endpoint
requires the name of an endpoint and an expression. This indicates that, in the
encoding (Section 4), the expression should only be evaluated for the endpoint,
and only included in the implementation of the endpoint (Section 5). Within a
channel_invariant, three additional expressions are available. These are \msg,
\sender and \receiver. They are used to indirectly refer to the sender, receiver,
and message of the next communicate statement.

Finally, the \chor keyword wraps an expression. This expression can access
memory of all endpoints in the choreography. Specifically, within \chor endpoint
ownership annotations are ignored. Because of this, it cannot be included in the
generated implementation. Consequently, if a choreography contains a \chor
expression, the generated implementation might not verify. More formally, we
believe that if a correct choreography does not contain \chor, the generated im-
plementation also verifies. We have not proven this, and leave it for future work.
The \chor keyword is included because it makes the workflow of the original
VeyMont [7] possible. It is also useful for prototyping contracts of a choreogra-
phy, as endpoint ownership annotations prevent asserting expressions that ignore
endpoint ownership, which limits the user when debugging annotations. Finally,
\chor serves a similar role as the assume statement. Once a choreography is
proven correct, the \chor should be removed. An example of \chor is in the
TTT case study on page 14.

8 R. Rubbens et al.

1 choreography increment(Store s) {
2 endpoint a = Role(s);
3 endpoint b = Role(null);
4
5 requires Perm[a](a.s, 1\2) ** Perm[a](a.s.x, 1) ** a.s.x > 0;
6 ensures Perm[a](a.s, 1\2) ** Perm[a](a.s.x, 1) ** a.s.x > 2;
7 run {
8 a: a.s.x := a.s.x + 1;
9 channel_invariant Perm(a.s, 1\2) ** Perm(a.s.x, 1) ** a.s.x > 1;
10 communicate a: a.s -> b: b.s;
11 assert Perm[b](a.s, 1\2) ** Perm[b](a.s.x, 1);
12 b: a.s.x := a.s.x + 1;
13 channel_invariant Perm(a.s, 1\2) ** Perm(a.s.x, 1\2) ** a.s.x > 2;
14 communicate b: b.s -> a: a.s;
15 } }

Fig. 4: A choreography where the endpoints increment a shared field with own-
ership annotations. Adapted from Fig. 1b. Note that some endpoint ownership
annotations that can be inferred by VeyMont are included for clarity.

3.3 New Features of VeyMont

This paper introduces two extensions for VeyMont choreographies: endpoint
ownership annotations, and channel invariants.

Endpoint ownership annotations indicate the owner of a permission. When
an endpoint e owns a permission Perm(o.x, f), this is written as Perm[e](o.x,
f). For example, the permission Perm[alex](o.x, 1) allows alex to write
to field x of object o. When a user writes Perm(alex.x, 1), VeyMont infers
automatically that Perm[alex](alex.x, 1) was meant. By explicitly writing
Perm[bob](alex.x, 1) the user specifies that bob currently has writing ac-
cess to alex.x, while alex has no access. This way, alex.x is used as shared
memory. Assignments can be annotated similarly: e: o.f := v denotes that
endpoint e executes assignment o.f := v. Again we allow shorthand nota-
tion: alex.x := 1 denotes alex: alex.x := 1. Communications are written
as communicate s: v -> r: u, where endpoint s sends value v to receiver r,
which stores it in u. The shorthand notation communicate alex.x -> bob.y is
also supported.

Channel invariants allow access to memory to be exchanged, i.e. shared.
This is done by adding a channel_invariant annotation on a communicate
statement. E.g. channel_invariant Perm(alex.x, 1) gives the receiver write
access to alex.x, while the sender has lost access after this communication. In
other words, permissions are transferred between the sending and receiving party
if and only if they are stated in the channel invariant.

Motivating Example We will now further demonstrate these concepts using
an example. Figure 4 shows how we annotate the program from Fig. 1b so that
VeyMont can verify the program with the shared field.

Endpoints a and b are initialized at lines 2 and 3. Then, line 5 states the
precondition of the run method: a has write access to a.s.x. On line 8, a in-

VeyMont: Correct Concurrent Shared-Memory Programs 9

1 choreography setter(Store s) {
2 endpoint a = Role();
3 endpoint b = Role();
4
5 requires Perm[a](s.x, 1);
6 run {
7 a: s.x := 0;
8 b: s.x := 1;
9 }
10 }

(a) An incorrect choreography

1 resource perm_x(Role e, Store s) = Perm(s.x, 1);
2
3 requires perm_x(a, s);
4 void setter_run_a(Store s, Role a, Role b) {
5 unfold perm_x(a, s);
6 s.x = 0;
7 fold perm_x(a, s);
8 unfold perm_x(b, s);
9 s.x = 1;
10 fold perm_x(b, s); }

(b) Encoding of run

Fig. 5: A choreography and encoding of run using permission stratification.

crements a.s.x. This is explicitly denoted with a: at the start of the line. On
lines 9 and 10, the reference to Store s is sent from a to b. In addition, the
channel invariant transfers write access for a.s.x from a to b. This is explicitly
verified with the assert on line 11. On line 12, b performs an increment to
a.s.x, and then proceeds with the communicate statement on line 14, to send
write permission back to a. The postcondition on line 6 states these write per-
missions, and additionally that a.s.x is more than 2. VeyMont will verify the
program, in particular that the postcondition will hold. After that, VeyMont can
also be invoked to generate the corresponding concurrent program with threads
for endpoints a and b.

4 Choreography Verification

VeyMont generates an encoding of a choreography such that VerCors can verify
it. This encoding essentially collapses all endpoint behaviors into one implemen-
tation. To prevent permissions of different endpoints from being accidentally
combined, permissions are stratified (Section 4.1). This also allows encoding the
transfer of the message and permissions between two endpoints (Section 4.2).

4.1 Permission Stratification

To encode permissions labeled with an endpoint owner into PVL, we use PVL
predicates to label a permission with its endpoint owner. For each permission
annotated with an endpoint owner, we create a predicate wrapping that permis-
sion. To this predicate we add an argument that models the endpoint owner. In
essence, this argument enforces that a predicate can only be unwrapped if the
current endpoint owner is specified. We call this technique “permission stratifi-
cation”. For example, the permission on line 5 of Fig. 5a results in the predicate
on line 1 in Fig. 5b, where [a] in the annotation causes creation of the argu-
ment e in the predicate. The argument e is only used to distinguish stratified
permissions with different owners, and therefore does not occur in the predicate.

10 R. Rubbens et al.

Adding an extra argument to the predicate, to encode which endpoint owns
the permission, works because of the following: unfolding a predicate only suc-
ceeds if the correct arguments are used. In this case, unfolding means exchanging
a predicate instance for its body, which in turn modifies the verification state. For
example, on line 3 in Fig. 5b, the predicate perm_x(a, s) is required. Within the
method, the permission within the predicate can only be accessed using unfold
perm_x(a, s). Conversely, the statement unfold perm_x(b, s) would fail, as
there is only a predicate perm_x(a, s) present. Because the arguments have to
be stated explicitly to unfold the predicate, the extra argument effectively acts
as a “key” to access the permission within the predicate.

VeyMont unfolds wrapper predicates automatically when the endpoint owner
of a permission is known, for example, in the case of assignment. This makes
the permission in the predicate available for verification. Later, VeyMont folds
the predicate, possibly with a new endpoint owner. The fold and unfold steps
are generated by VeyMont according to inferred or user-supplied annotations,
and are checked by VerCors. For example, VeyMont generates unfold and fold
annotations before and after assignment to fields. This is shown on lines 5 and 7
of Fig. 5b.

The example in Fig. 5a shows an incorrect choreography. The two endpoints
share a Store s and each writes to it. The user specifies that a owns the store
on line 5. This program contains a data race: a and b run concurrently and write
to the same location. Therefore, verification will fail, with an error on line 8.

The example in Fig. 5b shows the encoded choreography with all permissions
stratified. Line 1 defines a wrapping predicate for when the field x is owned by
a given endpoint Role e. Line 4 encodes the choreography parameter Store
s, and endpoints a and b. Verification with VerCors yields that on line 8 it
cannot unfold predicate perm_x(b, s) because it is not present in the verifica-
tion state. Indeed, after line 7, the verification state holds exactly perm_x(a,
s), and not perm_x(b, s)! One way to fix this example is to send the permis-
sion Perm(s.x, 1) from a to b between the two assignment statements using a
communicate statement. This will exchange perm_x(a, s) with perm_x(b, s),
at the cost of synchronization at run-time (see Section 4.2).

By wrapping permissions in predicates, VeyMont can verify the behavior of
multiple endpoints within one program. This is the key ingredient that allows
verification of choreographies with shared memory.

4.2 Encoding of Choreographic Communication

Figures 6b and 6c show how VeyMont encodes the communicate statement and
channel_invariant of Fig. 6a. This is an example to illustrate the encoding, it
is not meaningful on its own. All line numbers in this subsection refer to Fig. 6c.
Summarizing, the encoding consists of 4 steps: line 6 encodes message evaluation,
line 9 encodes channel invariant checking, lines 12 and 13 encode the transfer of
the channel invariant from a to b, and lines 15 to 17 encode message reception.
The fold annotations are required for handling stratified permissions, following
the explanation in the previous section.

VeyMont: Correct Concurrent Shared-Memory Programs 11

1 choreography incr(int i) {
2 endpoint a = Role(i); endpoint b = Role(i);
3 requires Perm(a.x, 1) **
4 (c() ==> Perm(a.z, 1) ** a.z == a.x);
5 requires Perm(b.y, 1);
6 run {
7 channel_invariant
8 c() ==> Perm(a.z, 1) ** \msg == a.z;
9 communicate a.x -> b.y;
10 } }

(a) Input choreography
1 // For each field f ∈ {c, x, y, z}, define:
2 resource perm_f(Role e, Role r) = Perm(r.f, 1);
3 int get_f(Role e, Role r) =
4 (\unfolding perm_f(e, r) \in r.f)

(b) Background definitions for encoding

1 requires perm_x(a, a) **
2 (c() ==> perm_z(a, a) **
3 get_z(a, a) == get_x(a, a);
4 requires perm_y(b, b);
5 void incr_run(int i, Role a, Role b) {
6 // Evaluate message
7 int m = get_x(a, a);
8 // Assert invariant
9 assert (c() ==> perm_z(a, a) **
10 m == get_z(a, a));
11 // Transfer invariant
12 if (c()) { unfold perm_z(a, a); }
13 if (c()) { fold perm_z(b, a); }
14 // Store message at target
15 unfold perm_y(b, b);
16 b.y = m;
17 fold perm_y(b, b);
18 }

(c) Encoding of choreography

Fig. 6: Encoding of a choreography with a channel_invariant and communicate
statement. For brevity, method definition incr has been omitted in Fig. 6c.

First, the message to be sent is stored in m on line 6. To read a.x, the function
get_x is used. Each get_f function unfolds the wrapper predicate perm_f to
read field f . On line 9, the channel invariant is checked using assert. Note that
the channel invariant was transformed: m replaces \msg, and a wrapper predicate
replaces Perm(a.z, 1), following the stratified permissions approach. The owner
of this wrapper predicate is a, because a is the sender of the communication.

The channel invariant is transferred from a to b on lines 12 and 13 via the
unfold and fold statements. The channel_invariant contains the condition
c(), which is an abstract global condition defined for this example. Because of
this condition, if statements are also necessary to conditionally unfold and fold
the predicates that wrap permissions. For the boolean parts of the invariant, no
annotations have to be added, as these are kept track of automatically by the
symbolic execution back-end of VerCors. Finally, m is assigned to target location
b.y on line 16, which models the receiving of the message by b.

5 Endpoint Projection

To generate an implementation for an endpoint of a given choreography, the
endpoint projection translates each statement depending on which endpoint is
currently the target. We extend the endpoint projection presented in [7] to take
into account endpoint ownership annotations. This allows VeyMont to include
contracts in the projection, making the generated implementation verifiable if
correct annotations are provided. In addition, we show how channel invariants
are included in the channel classes that implement communicate statements.

12 R. Rubbens et al.

Choreography with a & b Projection for: a Projection for: b
a.x := 5; → a.x = 5; /* skip */
communicate a.x -> b.y; → a_b.writeValue(a.x); b.y = a_b.readValue();
if (a.x == 5 && → if (a.x == 5 && if (true &&

b.y == 9) { → true) { b.y == 9) {
a.foo(a.x); } → a.foo(a.x); } /* skip */ }

b: a.x := 5; → /* skip */ a.x = 5;
communicate b: a.x -> a: b.y; → b.y = a_b.readValue(); a_b.writeValue(a.x);
Perm[a](x.f, 1) → Perm(x.f, 1) true
(\chor v) → true true
(\endpoint a; v) → v true

Fig. 7: Summary of endpoint projection rules by example. Top half describes
rules from [7]. Bottom half describes endpoint ownership annotations.

5.1 Statement & Expression Projection Rules

Figure 7 shows – by example – the endpoint projection rules to generate an
implementation for a target endpoint. The top half of the table shows the rules
identical to those in [7], the bottom half shows the new rules. Using these new
rules, contracts and loop invariants can straightforwardly be transformed and
preserved in the generated implementation, which was previously not possible.

We will now further discuss the rules in the bottom half of Fig. 7. If the target
endpoint participates, i.e. occurs, in a statement or expression, it is transformed
as follows: choreographic assignment (:=) is transformed into plain assignment,
communicate statements are transformed into invocations of readValue and
writeValue methods on channel objects. Perm[e](o.x, f) is included without
[e] in the generated implementation, and similarly, the keyword (\endpoint
e; v) causes v to be included in the generated implementation. If the target
endpoint does not participate in a statement or expression, it is omitted or
replaced with true. The keyword (\chor v) is handled by always discarding it.
This is because \chor can freely access the memory of all endpoints, and hence
cannot safely be included in the generated implementation (see Section 3.2).

5.2 Generating Channels

For each communicate statement (Fig. 8a) VeyMont generates a distinct channel
class (Fig. 8b). An instance of this class is constructed at the start of the program,
and both endpoints of the communicate statement are given a reference to it.
To send and receive values, the methods writeValue and readValue can be
called. The lock_invariant expresses that the channel_invariant holds at the
moment of transfer, i.e. when writeValue has written the communicated value in
msg and set hasMsg to true, and readValue has been called after that. Because
writeValue has the channel_invariant as precondition, and readValue as
postcondition, the transfer of the channel_invariant is achieved.

VeyMont: Correct Concurrent Shared-Memory Programs 13

1 channel_invariant
2 Perm(\sender.z, 1) **
3 Perm(\receiver.z, 1) **
4 \sender.z == \receiver.z;
5 communicate a.x -> b.y;

(a) communicate with corre-
sponding channel_invariant

1 lock_invariant
2 Perm(hasMsg, 1) ** Perm(msg, 1) **
3 Perm(s, 1\2) ** Perm(r, 1\2) **
4 (hasMsg ==> Perm(s.z, 1) **
5 Perm(r.z, 1) ** s.z == r.z);
6 class ChanAB {
7 boolean hasMsg; int msg;
8 Role s, r; // Sender, receiver
9
10 context Perm(s, 1\8) ** Perm(r, 1\8);
11 requires Perm(s.z, 1) ** Perm(r.z, 1) **
12 s.z == r.z;
13 void writeValue(int m);
14
15 context Perm(s, 1\8) ** Perm(r, 1\8);
16 ensures Perm(s.z, 1) ** Perm(r.z, 1) **
17 s.z == r.z;
18 int readValue(); }

(b) Generated channel class.

Fig. 8: Generated channel class for channel_invariant and communicate.

Since a channel invariant may refer to both \sender and \receiver, the gen-
erated class contains both endpoints as references s and r. Read permissions for
these fields reside at both endpoints. This way, respective fields of \sender and
\receiver, e.g. \sender.z, can be expressed as s.z, when calling writeValue
or readValue. The omitted implementations of writeValue and readValue are
standard, where writeValue does not block, but readValue does.

6 Case Studies

To demonstrate the VeyMont extension of this paper, we present case studies
on three variants of Tic-Tac-Toe. Here TTT is the baseline case study, adapted
from [7], TTTmsg uses ownership annotations, and TTTlast optimizes away a
theoretically unnecessary message. We provide the full annotated programs and
tool implementation in the artifact [21].

The TTT case study is a variant of the case study discussed in [7]. It is set
up to simulate a game of tic-tac-toe on a 3 × 3 in a distributed setting. This
means each endpoint has its own local copy of the board, and as the endpoints
take turns they send their moves to each other so the boards stay in sync. When
a winning move occurs, or the board runs out of spaces, the game ends.

While each case study has different annotations, the postcondition proven is
the same: after the game terminates, the boards of the two players are identical.

This postcondition highlights the complexity of verifying an easy to under-
stand choreography. To prove correctness, VeyMont must prove that each move
made by one player is also applied to the local board of the other player. This kind
of property could also occur when e.g. executing a transaction in a distributed
database. When verifying the TTT choreography and ignoring permission strat-
ification, the property is proved automatically. However, once the endpoints are

14 R. Rubbens et al.

1 choreography TTT() {
2 endpoint p1 = Player(0, true);
3 endpoint p2 = Player(1, false);
4
5 requires p1.myMark == 0 **
6 p2.myMark == 1 **
7 (\chor p1.turn != p2.turn **
8 p1.equalBoard(p2));
9 ensures (\chor p1.equalBoard(p2));
10 run {
11 loop_invariant /* omitted */ **
12 p1.equalBoard(p2);
13 while(!p1.done() && !p2.done()) {
14 if(p1.turn && !p2.turn) {

15 p1.createNewMove();
16 communicate p1.move.copy() -> p2.move;
17 } else {
18 p2.createNewMove();
19 communicate p2.move.copy() -> p1.move;
20 }
21 p1.doMove();
22 p2.doMove();
23 p1.turn := !p1.turn;
24 p2.turn := !p2.turn;
25 }
26 }
27 }

Fig. 9: Main choreography of the TTT case study. The loop invariant on line 11
is omitted as it is the same as the precondition of run.

split up into threads with the endpoint projection, a problem arises: the property
becomes impossible to state. This is because the property requires player one to
make an assertion about the state of player two, and vice versa.

Each case study solves this problem differently. The TTT case study solves
the problem by using \chor. This allows violating the restriction of stratified
permissions, at the cost of missing annotations in the generated implementation.
Case studies TTTmsg and TTTlast use stratified permissions to pass permissions
back and forth, ensuring the players can alternate reading and writing to both
boards safely. Specifically, TTTmsg introduces an extra message at run-time,
and TTTlast eliminates this run-time overhead by using more complicated an-
notations. For TTTmsg and TTTlast, the generated implementations do verify.

TTT. The TTT case study is similar to the case study presented in [7]. The only
changes are the reduction to a 3×3 board instead of an M×N board, and minor
syntactical changes. This is not a limitation of this is paper, it is merely a simpli-
fication for ease of presentation. The choreography of TTT is shown in Fig. 9. Af-
ter the endpoints are initialized, the endpoints enter a loop, where they alternate
taking turns. After each turn, the move is send to the other player so they can
update their board. The postcondition is (\chor p1.equalBoard(p2)), mean-
ing the board of p1 is equal to that of p2 after termination. With automatic
permission generation enabled, VeyMont can verify the choreography with the
initial approach presented in [7]. The projection on these (old style) choreogra-
phies yields generated implementations where the choreography properties hold
[15], but verification annotations marked with \chor are not present in the gen-
erated implementations, and hence the choreography postcondition cannot be
verified on it.

TTTmsg. We take a different approach to avoid \chor: each endpoint will only
keep half permission for their own board. The other halves are pooled and used to
establish and maintain board equality. After each turn, these pooled permissions

VeyMont: Correct Concurrent Shared-Memory Programs 15

1 channel_invariant
2 \msg.movePerm() **
3 ([1\2]\sender.boardPerm()) **
4 ([1\2]\receiver.boardPerm()) **
5 \sender.oneMoveAheadOf(\msg, \receiver);

(a) Channel invariant of the communications in
while loop

1 if (p1.turn && !p2.turn) {
2 channel_invariant
3 [1\4]\sender.boardPerm() **
4 [1\4]\receiver.boardPerm() **
5 \receiver.equalBoard(\sender);
6 communicate p1: true -> p2;
7 }

(b) Communication at game end

Fig. 10: Communications in TTTmsg case study.

are sent to the other player. Finally, when the game ends, the last player splits
the pooled permissions sends half to the other player. This gives both players
read permission to both boards, allowing them to state board equality.

To this end, we add to both communications in the while loop the channel
invariant of Fig. 10a. The sending player provides 1\2 permission for his own
board, and the other players board, in the channel invariant (using prefix scaling
notation [1\2] before the predicate on lines 3 and 4). This invariant implies that
the sending player is exactly one move ahead (line 5). This makes sense as the
receiving player still has to update the board with the communicated move after
the communication. Each player always keeps 1\2 permission for his own board.

At each point in the game, only one of the players can read both play-
ers’ boards, thus only one player is able to verify that the boards are equal.
When the game ends, one of the players sends 1\4 permission for both boards
to the other player. Figure 10b shows this for p1. This way, postcondition
p1.equalBoard(p2) can be stated by both endpoints without \chor, and hence
proven directly for the whole generated concurrent program.

TTTlast. We optimize away the communicate statement after the while loop,
while still retaining correctness. We do this by introducing additional ghost
state and reformulating the annotations to be more general. In doing so, we
demonstrate a trade-off: run-time overhead can often be eliminated, at the cost
of additional complexity in the contracts and ghost state.

Specifically, we use extra fields p1.lastPlayer and p2.lastPlayer. These
store a reference to the same object, which stores the mark of the “last player”.
In Fig. 11b we see that, just before communicating a move, p1 checks if this
move ended the game. If so, p1.lastPlayer is set to p2.myMark, because p2
will be the last player updating his board, before the game ends. The predi-
cate p1.lastPlayerPerms() specifies write permission to the mark field of its
lastPlayer object. If the game is not finished yet, p1 includes the full permis-
sion (1\2 + 1\2) in the channel invariant, so that p2 may (possibly) edit it.
Otherwise, if the game is finished, only 1\2 permission is sent, such that both
players can read their lastPlayer.mark field to see who was the last player.
In Fig. 11a we show the adapted postcondition of run: the player whose mark
is stored in its lastPlayer.mark field can ensure p1.equalBoard(p2). This

16 R. Rubbens et al.

1 ensures (\endpoint p1;
2 ([1\2]p1.lastPlayerPerms()) **
3 p1.lastPlayer.mark == p1.myMark ==>
4 ([1\2]p1.boardPerm() **
5 ([1\2]p2.boardPerm()) **
6 p1.equalBoard(p2));

(a) Postcondition of run method.

1 if (p1.gameFinished()) {
2 p1.lastPlayer.mark = 1 - p1.myMark;
3 }
4 channel_invariant /* ... */
5 ([1\2]\sender.lastPlayerPerms()) **
6 (!\sender.gameFinished() ==>
7 ([1\2]\sender.lastPlayerPerms()));
8 communicate p1.move.copy() -> p2.move;

(b) Code for marking the last player, and
the channel invariant extension.

Fig. 11: Adapted code of TTTlast with respect to TTTmsg, stated for p1. It is
symmetric for p2.

postcondition ensures that when both endpoints terminate in the generated im-
plementation, VeyMont will conclude that whichever endpoint is the last player,
there will always be one of them that will guarantee board equality. In this way,
p1.equalBoard(p2) can be proven directly for the whole generated program.

7 Related Work

Besides the works we build upon by extending VeyMont [7,15], the most sim-
ilar research in the realm of VerCors is the work by Darabi et al. [2]. They
introduce the send and receive statements to model loop dependencies. These
statements allow sending permission to other iterations of a loop, and are simi-
lar to communicate. However, these statements are only supported inside loops,
offer no support for sending a value, and conditional sends can only depend on
variables not modified inside the loop.

Similar works in the area of choreographies are on logics to reason about
the correctness of choreographies [9,10]. These works could serve as a basis for
formalizing the approach outlined in this paper, but they would have to be
extended with support for separation logic.

We see interesting correspondences with multiple works on session types.
Generally, session types do not support implementation generation. In theory,
session type results may be transferable to choreographies, but this step is non-
trivial.

Hinrichsen et al. [12] introduce Actris, a Coq framework using Iris for correct-
ness reasoning over session types. Jacobs et al. [14] introduce similar but smaller
formalization of dependent session protocols, also in Iris. Both approaches are
powerful, but being Coq frameworks, lack the automation we aim for in this
paper. They could be good starting points for formalizing our approach.

Neykova et al. [19] present SPY, a tool that generates run-time monitors
of user-defined constraints on exchanged messages and endpoint state. Our ap-
proach works without running the code, and introduces no overhead at run-time.

VeyMont: Correct Concurrent Shared-Memory Programs 17

Bouma et al. [8] use VerCors to check conformance of Java programs to a
multi-party session type (MPST). Specifically, they use permissions only at the
implementation level, while we already use permissions at choreography-level.

Marques et al. present an approach to verify that C programs written using
MPI [17] follow a protocol defined using a session type [16]. Their tool allows
constraints to be expressed over messages sent and received, which is an extended
version of session types. However, the constraints are limited to (in-)equalities of
arithmetic expressions and variables, while we support general first-order logic
expressions. The tool also has no support for shared memory or ghost state.

Zhou et al. [27] present Session⋆, a tool that extends the Scribble protocol
language [26] with refinement types by compiling Session⋆ protocols to F⋆ [23], a
functional programming language with refinement types. Because mutable mem-
ory is supported within the generated callbacks implemented in F⋆ through an
effect system, Session⋆ supports a limited form of mutability indirectly. We sup-
port it generally, allowing sharing mutable memory across implementation call-
backs and reasoning about it in contracts.

Swamy et al. [24] formalize a minimal 2-party session type framework as an
example use of the SteelCore separation logic framework in F⋆ [23]. They do not
offer specialized support for correctness reasoning of session types or the transfer
of resources via session types, beyond what F⋆ offers natively. We foresee that
our approach could be embedded in F⋆ using SteelCore.

Bocchi et al. [5] present a formal framework for applying design-by-contract
to session types. The “global assertions” from their work are similar to contracts
in VeyMont choreographies. Besides the difference between session types and
choreographies, Bocchi et al. also do not support shared memory. They do define
well-assertedness of global assertions to e.g. prevent endpoints from using values
they do not know about. We resolve this by using permission stratification.

Finally, Proust et al. [20] have integrated the Why3 [4] program verifier with
the Bulk Synchronous Parallel (BSP) model. The version of BSP in this work
shares some aspects with OpenMP, as it offers parallelized versions of common
operations, such as map and fold. In addition, BSP offers choreography-like
many-to-many communication. There are two differences with our work. First,
code written using the BSP API can only be executed in an environment that
provides such an API. VeyMont generates plain Java & PVL code that can be
verified and only needs the standard library. Second, Proust et al. only consider
purely functional programs, while VeyMont supports reasoning about mutable
variables and shared memory.

8 Conclusion

VeyMont could already verify choreographies, auto-generate permissions, and
use the endpoint projection to generate an implementation. In this work, we
added endpoint ownership annotations and channel invariants to VeyMont, such
that choreographies can specify concurrent programs with shared memory be-
tween threads. Additionally, we transfer verification annotations to the generated

18 R. Rubbens et al.

implementations, such that they can be verified directly, without the choreog-
raphy. We showed the new capabilities of extended VeyMont in case studies.

For future work, we first of all aim to introduce parameterized endpoints,
such that distributed systems with any n number of nodes can be formulated as
choreography. Also, adding support for one-to-many or many-to-one communi-
cations would make VeyMont more expressive. While we now use verification of
choreographies and the generated implementations to ensure correctness of the
projection, we would also like to formalize our approach, i.e. extend [15]. Finally,
by doing more case studies, we will validate our approach more extensively.

VeyMont: Correct Concurrent Shared-Memory Programs 19

References

1. Armborst, L., Bos, P., van den Haak, L.B., Huisman, M., Rubbens, R., Sakar, Ö.,
Tasche, P.: The VerCors verifier: A progress report. In: Gurfinkel, A., Ganesh, V.
(eds.) Computer Aided Verification - 36th International Conference, CAV 2024,
Montreal, QC, Canada, July 24-27, 2024, Proceedings, Part II. Lecture Notes in
Computer Science, vol. 14682, pp. 3–18. Springer (2024). https://doi.org/10.
1007/978-3-031-65630-9_1

2. Blom, S., Darabi, S., Huisman, M.: Verification of loop parallelisations. In: Egyed,
A., Schaefer, I. (eds.) Fundamental Approaches to Software Engineering - 18th
International Conference, FASE 2015, Held as Part of the European Joint Confer-
ences on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18,
2015. Proceedings. Lecture Notes in Computer Science, vol. 9033, pp. 202–217.
Springer (2015). https://doi.org/10.1007/978-3-662-46675-9_14

3. Blom, S., Darabi, S., Huisman, M., Oortwijn, W.: The vercors tool set: Verifi-
cation of parallel and concurrent software. In: Lecture Notes in Computer Sci-
ence, pp. 102–110. Springer International Publishing (2017). https://doi.org/
10.1007/978-3-319-66845-1_7

4. Bobot, F., Filliâtre, J.C., Marché, C., Paskevich, A.: Why3: Shepherd your herd of
provers. In: Boogie 2011: First International Workshop on Intermediate Verification
Languages. pp. 53–64. Wrocław, Poland (August 2011)

5. Bocchi, L., Honda, K., Tuosto, E., Yoshida, N.: A theory of design-by-contract
for distributed multiparty interactions. In: Gastin, P., Laroussinie, F. (eds.) CON-
CUR 2010 - Concurrency Theory, 21th International Conference, CONCUR 2010,
Paris, France, August 31-September 3, 2010. Proceedings. Lecture Notes in Com-
puter Science, vol. 6269, pp. 162–176. Springer (2010). https://doi.org/10.1007/
978-3-642-15375-4_12

6. Bornat, R., Calcagno, C., O’Hearn, P.W., Parkinson, M.J.: Permission accounting
in separation logic. In: Palsberg, J., Abadi, M. (eds.) Proceedings of the 32nd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2005, Long Beach, California, USA, January 12-14, 2005. pp. 259–270. ACM
(2005). https://doi.org/10.1145/1040305.1040327

7. van den Bos, P., Jongmans, S.: Veymont: Parallelising verified programs instead of
verifying parallel programs. In: Chechik, M., Katoen, J., Leucker, M. (eds.) Formal
Methods - 25th International Symposium, FM 2023, Lübeck, Germany, March 6-
10, 2023, Proceedings. Lecture Notes in Computer Science, vol. 14000, pp. 321–339.
Springer (2023). https://doi.org/10.1007/978-3-031-27481-7_19

8. Bouma, J., de Gouw, S., Jongmans, S.: Multiparty session typing in java, de-
ductively. In: Sankaranarayanan, S., Sharygina, N. (eds.) Tools and Algorithms
for the Construction and Analysis of Systems - 29th International Conference,
TACAS 2023, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2022, Paris, France, April 22-27, 2023, Proceedings,
Part II. Lecture Notes in Computer Science, vol. 13994, pp. 19–27. Springer (2023).
https://doi.org/10.1007/978-3-031-30820-8_3

9. Carbone, M., Grohmann, D., Hildebrandt, T.T., López, H.A.: A logic for chore-
ographies. In: Honda, K., Mycroft, A. (eds.) Proceedings Third Workshop on Pro-
gramming Language Approaches to Concurrency and communication-cEntric Soft-
ware, PLACES 2010, Paphos, Cyprus, 21st March 2010. EPTCS, vol. 69, pp. 29–43
(2010). https://doi.org/10.4204/EPTCS.69.3

https://doi.org/10.1007/978-3-031-65630-9_1
https://doi.org/10.1007/978-3-031-65630-9_1
https://doi.org/10.1007/978-3-662-46675-9_14
https://doi.org/10.1007/978-3-319-66845-1_7
https://doi.org/10.1007/978-3-319-66845-1_7
https://doi.org/10.1007/978-3-642-15375-4_12
https://doi.org/10.1007/978-3-642-15375-4_12
https://doi.org/10.1145/1040305.1040327
https://doi.org/10.1007/978-3-031-27481-7_19
https://doi.org/10.1007/978-3-031-30820-8_3
https://doi.org/10.4204/EPTCS.69.3

20 R. Rubbens et al.

10. Cruz-Filipe, L., Graversen, E., Montesi, F., Peressotti, M.: Reasoning about chore-
ographic programs. In: Jongmans, S., Lopes, A. (eds.) Coordination Models and
Languages - 25th IFIP WG 6.1 International Conference, COORDINATION 2023,
Held as Part of the 18th International Federated Conference on Distributed Com-
puting Techniques, DisCoTec 2023, Lisbon, Portugal, June 19-23, 2023, Proceed-
ings. Lecture Notes in Computer Science, vol. 13908, pp. 144–162. Springer (2023).
https://doi.org/10.1007/978-3-031-35361-1_8

11. Haack, C., Huisman, M., Hurlin, C.: Reasoning about java’s reentrant locks. In:
Ramalingam, G. (ed.) Programming Languages and Systems, 6th Asian Sympo-
sium, APLAS 2008, Bangalore, India, December 9-11, 2008. Proceedings. Lec-
ture Notes in Computer Science, vol. 5356, pp. 171–187. Springer (2008). https:
//doi.org/10.1007/978-3-540-89330-1_13

12. Hinrichsen, J.K., Bengtson, J., Krebbers, R.: Actris: session-type based reasoning
in separation logic. Proc. ACM Program. Lang. 4(POPL), 6:1–6:30 (2020). https:
//doi.org/10.1145/3371074

13. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: Hankin, C. (ed.) Program-
ming Languages and Systems - ESOP’98, 7th European Symposium on Program-
ming, Held as Part of the European Joint Conferences on the Theory and Practice
of Software, ETAPS’98, Lisbon, Portugal, March 28 - April 4, 1998, Proceed-
ings. Lecture Notes in Computer Science, vol. 1381, pp. 122–138. Springer (1998).
https://doi.org/10.1007/BFB0053567

14. Jacobs, J., Hinrichsen, J.K., Krebbers, R.: Dependent session protocols in sepa-
ration logic from first principles (functional pearl). Proc. ACM Program. Lang.
7(ICFP), 768–795 (2023). https://doi.org/10.1145/3607856

15. Jongmans, S., van den Bos, P.: A predicate transformer for choreographies -
computing preconditions in choreographic programming. In: Sergey, I. (ed.) Pro-
gramming Languages and Systems - 31st European Symposium on Programming,
ESOP 2022, Held as Part of the European Joint Conferences on Theory and Prac-
tice of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings.
Lecture Notes in Computer Science, vol. 13240, pp. 520–547. Springer (2022).
https://doi.org/10.1007/978-3-030-99336-8_19

16. Marques, E.R.B., Martins, F., Vasconcelos, V.T., Ng, N., Martins, N.: Towards
deductive verification of MPI programs against session types. In: Yoshida, N.,
Vanderbauwhede, W. (eds.) Proceedings 6th Workshop on Programming Language
Approaches to Concurrency and Communication-cEntric Software, PLACES 2013,
Rome, Italy, 23rd March 2013. EPTCS, vol. 137, pp. 103–113 (2013). https://doi.
org/10.4204/EPTCS.137.9

17. Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Ver-
sion 4.0 (Jun 2021), https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.
pdf

18. Montesi, F.: Introduction to Choreographies. Cambridge University Press (2023).
https://doi.org/10.1017/9781108981491

19. Neykova, R., Yoshida, N., Hu, R.: SPY: local verification of global protocols. In:
Legay, A., Bensalem, S. (eds.) Runtime Verification - 4th International Conference,
RV 2013, Rennes, France, September 24-27, 2013. Proceedings. Lecture Notes in
Computer Science, vol. 8174, pp. 358–363. Springer (2013). https://doi.org/10.
1007/978-3-642-40787-1_25

20. Proust, O., Loulergue, F.: Verified scalable parallel computing with why3. In: Fer-
reira, C., Willemse, T.A.C. (eds.) Software Engineering and Formal Methods - 21st

https://doi.org/10.1007/978-3-031-35361-1_8
https://doi.org/10.1007/978-3-540-89330-1_13
https://doi.org/10.1007/978-3-540-89330-1_13
https://doi.org/10.1145/3371074
https://doi.org/10.1145/3371074
https://doi.org/10.1007/BFB0053567
https://doi.org/10.1145/3607856
https://doi.org/10.1007/978-3-030-99336-8_19
https://doi.org/10.4204/EPTCS.137.9
https://doi.org/10.4204/EPTCS.137.9
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://doi.org/10.1017/9781108981491
https://doi.org/10.1007/978-3-642-40787-1_25
https://doi.org/10.1007/978-3-642-40787-1_25

VeyMont: Correct Concurrent Shared-Memory Programs 21

International Conference, SEFM 2023, Eindhoven, The Netherlands, November 6-
10, 2023, Proceedings. Lecture Notes in Computer Science, vol. 14323, pp. 246–
262. Springer (2023). https://doi.org/10.1007/978-3-031-47115-5_14, https:
//doi.org/10.1007/978-3-031-47115-5_14

21. Rubbens, R., van den Bos, P., Huisman, M.: VeyMont permission annotations tic-
tac-toe case studies and tool implementation (2024). https://doi.org/10.5281/
zenodo.13348214

22. Sakar, Ö., Safari, M., Huisman, M., Wijs, A.: Alpinist: An annotation-aware GPU
program optimizer. In: Fisman, D., Rosu, G. (eds.) Tools and Algorithms for the
Construction and Analysis of Systems - 28th International Conference, TACAS
2022, Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings, Part
II. Lecture Notes in Computer Science, vol. 13244, pp. 332–352. Springer (2022).
https://doi.org/10.1007/978-3-030-99527-0_18

23. Swamy, N., Hritcu, C., Keller, C., Rastogi, A., Delignat-Lavaud, A., Forest, S.,
Bhargavan, K., Fournet, C., Strub, P., Kohlweiss, M., Zinzindohoue, J.K., Béguelin,
S.Z.: Dependent types and multi-monadic effects in F. In: Bodík, R., Majumdar,
R. (eds.) Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA,
January 20 - 22, 2016. pp. 256–270. ACM (2016). https://doi.org/10.1145/
2837614.2837655

24. Swamy, N., Rastogi, A., Fromherz, A., Merigoux, D., Ahman, D., Martínez, G.:
Steelcore: an extensible concurrent separation logic for effectful dependently typed
programs. Proc. ACM Program. Lang. 4(ICFP), 121:1–121:30 (2020). https://
doi.org/10.1145/3409003

25. Vercors tool homepage. https://utwente.nl/vercors, accessed: 2024-03-01
26. Yoshida, N., Hu, R., Neykova, R., Ng, N.: The scribble protocol language. In:

Abadi, M., Lluch-Lafuente, A. (eds.) Trustworthy Global Computing - 8th Inter-
national Symposium, TGC 2013, Buenos Aires, Argentina, August 30-31, 2013,
Revised Selected Papers. Lecture Notes in Computer Science, vol. 8358, pp. 22–41.
Springer (2013). https://doi.org/10.1007/978-3-319-05119-2_3

27. Zhou, F., Ferreira, F., Hu, R., Neykova, R., Yoshida, N.: Statically verified refine-
ments for multiparty protocols. Proc. ACM Program. Lang. 4(OOPSLA), 148:1–
148:30 (2020). https://doi.org/10.1145/3428216

https://doi.org/10.1007/978-3-031-47115-5_14
https://doi.org/10.1007/978-3-031-47115-5_14
https://doi.org/10.1007/978-3-031-47115-5_14
https://doi.org/10.5281/zenodo.13348214
https://doi.org/10.5281/zenodo.13348214
https://doi.org/10.1007/978-3-030-99527-0_18
https://doi.org/10.1145/2837614.2837655
https://doi.org/10.1145/2837614.2837655
https://doi.org/10.1145/3409003
https://doi.org/10.1145/3409003
https://utwente.nl/vercors
https://doi.org/10.1007/978-3-319-05119-2_3
https://doi.org/10.1145/3428216

	VeyMont: Choreography-Based Generation of Correct Concurrent Programs with Shared Memory

