
From User Stories to End-to-end Web Testing
Humaid Mollah

Formal Methods and Tools Group
University of Twente∗

Enschede, The Netherlands
humaidalimollah73@gmail.com

Petra van den Bos
Formal Methods and Tools Group

University of Twente
Enschede, The Netherlands

p.vandenbos@utwente.nl

Abstract—In agile development of web applications, user
stories are a common aid to develop the software. In this paper,
we exploit this for deriving test cases from these user stories, to
check and ensure the functioning of the application. Our step-
by-step method is based on a literature review and interviews
with professional testers. Besides steps for transforming user
stories into test cases, the method also includes guidelines
to select user stories beforehand, and guidelines on how to
implement automatically executable test cases, afterwards. We
demonstrate the method’s applicability with case studies on three
web applications from different application domains.

Index Terms—user story, end-to-end test, web application, agile
software development

I. INTRODUCTION

Web applications take up a significant part of the software
industry [20]. Consequently, efficient testing of such systems
has become a major issue. Today, most software organizations
follow an agile development methodology. This is an iterative
approach for delivering projects to customers at a rapid pace
[8]. With this paper we aim to find a testing approach that
is suitable for web applications developed in such an agile
environment. In particular, the testing approach should:

1) target web applications,
2) be a systematic approach targeting user-level tests,
3) fit into an agile development environment. In particular

the approach should not introduce limiting restrictions or
impose changes on the used development process, and

4) also require limited time for writing test cases, since web
applications are developed at a rapid pace.

Using above requirements we motivate the approach of this
paper. First, we note that most modern web applications (1)
adopt a multi-tier architecture [17]. The application framework
is then divided into multiple layers, like a database and a
application server [9]. Also, a web application is commonly
written in multiple programming languages. The challenges of
combining components of such an architecture without making
mistakes, make it valuable to test systematically at a user-level
(2). In this paper, we therefore target end-to-end tests: tests that
test the user workflow of an application from start to end.

Agile development (3) commonly includes the use of user
stories to describe customer requirements [7] about the func-
tionality of the web application [8]. Consequently, user stories

∗This paper is based on the thesis of Humaid Mollah, which he wrote
as part of his Computer Science bachelor at the University of Twente, and
performed as an assignment for the company El Nino, located in Enschede.

give us a user-level description of system behaviour that is im-
portant to test. Using these user stories to formulate test cases
therefore fits perfectly in an agile development environment.
Moreover, no extra time (4) is required for obtaining user
stories, as writing them is already part of the agile development
process [8]. In this paper, we therefore investigate how to
derive end-to-end test cases from user stories.

Though user stories and end-to-end tests are both defined at
system level, translation from one to the other is non-trivial. A
user story is only a sentence, usually in the format “As a ⟨user⟩
I want to ⟨goal⟩ so that ⟨reason⟩” [8]. An end-to-end test is
an executable piece of code, and hence is more detailed. With
a systematic approach, end-to-end test cases can be developed
as soon as user stories have been defined, in parallel with the
implementation of the user story in the web application itself,
so that customer requirements are verified during the entire
development process.

There exist fully automated approaches where a user story
is automatically translated into test cases [1], [12], [19].
However, in those approaches, a template or a meta model has
to be created for every user story by following a strict set of
rules and keywords. These models have to be provided with all
technical information about the parts of the web application,
such as identifiers of input fields, buttons, or pages, or HTTP
status codes. So though automated, these approaches require
additional modelling effort, and information for creating exe-
cutable test cases (similar information as for writing test cases
manually). Moreover, a tester needs to go through a learning
curve to learn how to do the modelling, adhere to the rules etc.
In a fast-paced agile environment (3) this time-investment (4)
may be too much compared to the development time for the
web application. Instead we propose a more light-weight and
systematic method that involves manually writing test cases.

We base our method, for developing test cases from user
stories, on a combination of approaches from literature (Sec-
tion II). Besides giving a comprehensive overview from lit-
erature on how to transform user stories into test cases, we
also consider what happens before and after: how to select a
user story, and how to implement a test case. Furthermore,
we include interviews with professional testers to see what
is done in practice (Section III). In Section V we show the
applicability of our method by implementing test cases for
three case studies from different application domains. The
first case study is a web application for scheduling an event,



the second for monitoring sensor devices, and the third for
searching contact details of university employees. Section VI
concludes and mentions future work. Additionally, this paper
is accompanied by an artefact [3], containing the interview
transcripts and the implemented test cases for our case studies.

The novelty of this paper is that we formulate a step-by-step
method (Section IV) to test web applications from user stories,
based on the combination and integration of all mentioned
contributions: guidelines on how to select user stories, steps
for transforming user stories into test cases, guidelines on how
to implement test cases, and key points identified from the
interviews with professional testers. Moreover, we apply this
method on case studies. To the best of our knowledge, existing
work only focuses on a subset of these elements. For example,
[26] provide a survey of best practices for developing and
implementing end-to-end tests (as in our guidelines), and [1],
[12], [19] focus on user story to test case transformation (as
in our literature review).

We target web applications for applying our method, by
specifically giving guidelines for implementing test cases for
web applications. However, we note that the first two steps of
our method, where we select user stories, and transform user
stories into test cases, are generic. Consequently, these two
steps can also be applied on other types of applications.

II. LITERATURE REVIEW

Before discussing out literature review in the next sections,
we first introduce the necessary terminology. First of all, a test
case is a scenario in the web application. This includes any
data inputs necessary to execute the scenario, and the expected
result of this scenario. Test cases help determine whether the
software satisfies a particular requirement [1], [15].

Secondly, a workflow is a series of processes or actions that
the user performs from initiation to completion. An example
of a workflow could be searching for a hotel followed by
booking the hotel. Another example is creating an account
(signing up) followed by logging into your account and then
performing an action in your account. End-to-end tests execute
user workflows in the web application [13].

The outline of next sections is as follows. Subsection II-A
discusses the best practices for writing end-to-end tests for
a web application such that the most important aspects are
tested. The generation of end-to-end test cases from user
stories will be discussed in Subsection II-B. This section
presents a three-step procedure for identifying workflows,
creating use-case scenarios, and defining test cases, from user
stories. Finally, in Subsection II-C, discusses existing methods
and tools for implementation of these end-to-end test cases.

A. Best practices for end-to-end testing

Many articles discuss the best practices for writing end-to-
end tests [2], [4], [8], [13], [26], [27] Below we summarize
the best practices applicable to our approach:

1) Focus on the product’s most important workflow. The
most important workflows of the web application should
be tested first. For example, for booking a hotel, the most

Template Example
As a ⟨type of user⟩ As a user
I want ⟨some goal⟩ I want to login to the webapp

so that ⟨reason⟩ (optional) so that I can create a blog

Table I: Template of a basic User story.

important workflow is searching locations and making a
reservation. Therefore, this workflow and all user stories
related to this workflow should be tested first.

2) Large workflows should be broken down. Large work-
flows in the application should be broken down into
smaller workflows and actions, until the whole workflow
can be expressed in terms of single user actions. This is
because it is hard to find and trace back errors in a large
workflow that is implemented as one large chunk of test
code, compared to a workflow that is implemented as a
sequence of small actions.

3) Avoid low-level test cases. When conducting end-to-end
testing, it is important to only include test cases that are
relevant for the user story being tested. Low-level test
cases, which focus on verifying the functionality of small,
individual components or modules of a software system,
should be avoided. These tests typically verify specific
functionality of a single unit of code, such as a function
or method, and are also known as unit tests. For instance,
when testing payment processing through a bank card, it
is unnecessary to confirm whether charges are not applied
on an expired VISA card, if a unit test for expired cards
has already been conducted.

4) Build test cases for all possible workflows. A product
must be tested for all possible interactions and micro-
interactions that a user might have with the product.
Therefore, the product should be tested for as many
workflows as possible. Subsection II-B discusses how test
cases can be formulated for these workflows.

B. Generation of test cases from user stories

In agile software development, user stories define software
requirements [8]. They demonstrate a sequence of actions
performed by the system to provide an observable result of
value to the user [19]. User stories are not written in much
detail [1], [8]. However, they tell the customer what to expect,
a developer what to code, and a tester what to test [1]. Table I
shows a template of a basic user story along with an example.

Various papers present different techniques and models
to generate test cases from use cases and user stories [1],
[8], [12], [14], [15], [19]. The application of user stories
for the development of end-to-end acceptance tests has been
discussed extensively in the book written by Cohn [8]. The
conversion of use case scenarios into test cases has been
studied comprehensively by Heumann [15]. There are also
automated model-driven approach for the generation of test
cases from use cases [1], [19]. Based on these papers, we
define a three-step process to identify end-to-end test cases
for a web application from its user stories. We will explain
the steps by referring to the User creates a Blog example of

2



Test inputs
Scenario name User Actions Partition testing, User-based testing Expected result

user id password blog text field
User creates blog successfully Login, Create blog, Submit blog valid valid non-empty Display blog text

Unidentified user Login invalid valid - Display login error
Unidentified user Login valid invalid - Display login error

Empty blog Login, Create blog, Submit blog valid valid empty Display alert about empty field
Server error Login any any - Display server error

Table II: Test case definition for User creates blog example. With ‘-’ we denote that no value is needed for the scenario.

Scenario Name Starting Flow Alternate
User successfully creates a blog Basic Flow

Unidentified user Basic Flow 1
Empty blog Basic Flow 2
Server error Basic Flow 3

Table III: Use-Case Scenarios for User creates blog example.

Table I. The steps are as follows: Identify Flow (1), Develop
Use-Case Scenarios (2), and Define Test Cases (3). We discuss
each step in the next subsections.

1) Identify flow: The first step to generate test cases from
user stories is to identify the flow of events in a user story.
Such flows consists of basic flows and alternate flows [15]. The
basic flow covers the flow of events that happen “normally”.
The alternate flow consists of events that refer to the “optional”
or “exceptional” behavior of that user story. Alternate flows
can be thought of as alternative routes to the basic flow. There
can be more than one alternate flows for a user story.

From the example of Table I, we derive the following flows:
Basic Flow

1) Login : User accesses the web-app, system asks for
user ID and password, user is authenticated.

2) Create a Blog: The system displays the homepage, the
user clicks on the button “Create a Blog”, and the
system displays the text field of the Blog form.

3) Submit Blog: The user writes text in the blog form, the
user presses “Submit Blog”, and the system displays
the created blog on the user’s homepage.

Alternate Flow 1 Unidentified user : Invalid user ID or pass-
word entered for Login.

Alternate Flow 2 Empty Blog : Blog text-field is empty.
Alternate Flow 3 Server error : The server is not running.

2) Develop use-case scenarios: The second step is to define
use-case scenarios for the workflows identified from the user
story. Use-case scenarios define a complete path for that user
story [1], [8], [15], [19]. Such a path can include, for example,
just the basic flow, the basic flow plus alternative flow 1,
or basic flow plus alternative flow 1 and 2 [15]. In theory,
many combinations of flows are possible. However, the most
important ones should be chosen following best practice (1)
of Subsection II-A. Table III shows some of the important
use-case scenarios for the User creates blog example.

3) Define test cases: The final step is to formulate test cases
based on the use-case scenarios we have developed in the
previous section. To do this, a table can be used as shown in
Table II. This table is the test case definition with the actions

of the use-case scenarios, the expected results and selected
data inputs. Each row of the table represents one test case.
Each scenario has a minimum of 1 test case but there can be
more. Take the following three steps to define the test cases:

1) Derive user actions The use-case scenarios describe the
combinations of basic and alternate flows, and the de-
scription of each of the flows provides the user actions
of the flow. Use this to derive the user actions of each
use case scenario.

2) Identify data inputs: Identify the different data fields
needed for the user actions, and choose test inputs, i.e.
values, for these data fields. For the User creates blog
example, three fields can be identified from the user
actions: student ID, password, and blog text field. The
following strategies can be used for choosing test inputs:

a) Boundary testing : Test inputs are chosen using bound-
ary values [23]. For example, if the passing marks for
an examination are 50%, the boundary values to test
would be 49% and 50%. In this manner, both valid and
invalid boundaries are tested.

b) Random testing : Test inputs are chosen at random from
the data domain. [11]. For example, we insert some
random text in a text field, or choose a random number
of products to buy.

c) Partition testing: The set of inputs can be divided or
partitioned into separate domains according to a self-
defined rule. A test inputs is then chosen from each
of these subdomains [29]. For example, inputs for a
data field can be divided into a set of valid dates, e.g.
02-03-2004, and invalid dates, e.g. 02-30-2004.

d) Usage-based testing : Select test inputs based on usage
of the web application [25], e.g. by logging inputs used
by users. For example, often a user chooses to buy both
a phone and a phone sleeve within the same order.

3) Identify expected results: Identify the expected result of
each test case. The expected result describes the state of
the system after executing the user actions with its test
inputs. For example, scenario Unidentified student (see
Table II) has Login error as expected result for both tests.

InTable II, the test inputs are chosen using the partition
testing approach, i.e., in Table II we have the partitions of
valid and invalid user ids and passwords, and empty and
non-empty blog fields. To choose a particular value from the
partition, usage-based testing can be applied additionally. For
the Server error scenario, any test input can be chosen because
the expected result should always be a server error.

3



C. Implementation of end-to-end tests
When test cases have been defined, they still need to

be implemented such that they can be executed. Literature
suggests various techniques for the automation of end-to-end
web testing [17]. These techniques can be broadly divided
into two categories namely Capture Replay Web Testing, and
Programmable Web Testing. The former refers to recording
actions performed by a user on the web app (capture) and
automatically executing the same actions (replay) which repeat
the mouse movements and key-presses performed by the
user [16], [17]. The latter uses test scripts to simulate the
actions performed by a user with the help of specific testing
frameworks [17]. The former is not a preferred option in our
case for three reasons. Firstly, capture replay web testing is
difficult to maintain and is not reusable [16]. Secondly, we
cannot perform random testing by using this technique. Lastly,
this technique cannot be used to test invisible web elements.
Therefore, we will use programmable web testing, for the
implementation and automatic execution of end-to-end test
cases. Programmable web testing makes use of web elements
such as input fields, links, buttons, etc. for test case execution.
There are three methods to localize these web elements:
DOM-based Locate web page elements using information

contained in the Document-Object-Model (DOM). A
DOM is a programming interface for documents used
on the web. It allows programs to change their structure,
style, and content [6]. By using this approach, we can
locate an element by its tag name or an attribute by its ID.
This technique requires good development practices, and
specifically good naming conventions, for writing code
for the client-side (front-end), so that web elements can
be identified by a unique identifier.

Coordinate-based Locate web elements by recording coordi-
nates of a web page. This technique produces very fragile
test scripts and is therefore considered obsolete [17].

Visual-based Locate web elements using image recognition
to control GUI components. This technique requires the
tester to make images of web elements so that parts of the
web page can be located by checking for similarity with
the web element. This can be a very lengthy process.

Literature suggests that the programmable DOM-based ap-
proach is the best option for implementing end-to-end tests
[17], [18], [21], [26]. Firstly, DOM-based test cases do not
require much time to develop. Secondly, the evolution of test
cases can be done quickly and without much effort. Here,
the word ‘evolution’ refers to updating test cases when appli-
cation requirements and functionality change. Such changes
are common in an agile development environment. Thirdly,
DOM-based locators are proven to be more robust than visual
locators. Lastly, tools for DOM-based approaches are readily
available, e.g. Selenium Web Driver and Cypress.

III. INTERVIEWS

To gain comprehensive insights into end-to-end test case
generation and implementation, we interviewed senior soft-
ware testers from the web application development agency El

Nino. These testers were carefully chosen based on their ex-
tensive experience in testing web applications using industry-
standard tools such as Selenium and Cypress. As a result,
their perspectives and experience with significant practical
applications of end-to-end testing strategies provides valuable
insights. The testers were interviewed individually and asked a
set of pre-prepared questions aimed at eliciting their feedback
on our literature review. Specifically, we asked them to give
their insights on how to:

• Determine important functionality to test
• Develop test case scenarios from user stories
• Implement end-to-end test cases

In next three subsections, we summarize the information
acquired in these interviews. In the last subsection, we report
the key points which have been used to develop our method
of Section IV. For interview transcripts, see the artefact [3].

A. Determine important functionality to test

The respondents mentioned that the important functionality
of a web app can be identified from the product backlog.
This is where the most important user stories for the current
iteration of the project are marked. For example, in a priority
queue in GitLab, the most critical functionalities are marked.
However, they are not always sorted, so there can be multiple
important user stories. In an agile working environment, the
product owner is responsible for prioritizing user stories that
need to be tested, and selects the user stories to test. Regarding
the test cases that should be omitted, the testers agreed that
low-level test cases can be avoided while writing end-to-end
test cases. One of the testers said: “Indeed, user stories which
are tested in unit tests can be skipped.”. These user stories are
related to small bug fixes or features that may have a very low
impact on the project.

B. Develop test cases scenarios from user stories

The respondents could relate the concepts of basic and
alternate flows to their own techniques for identifying test
cases. One of the testers said, “I call the basic flow the
happy path”. Another tester explained, “alternative flows are
flows that are likely to be used apart from the regular flow”.
The respondents mentioned that the number of alternate flows
depends on the functionality being tested. Since a lot of
the alternate flows are covered via unit tests, the end-to-
end test cases should be used to test broader “exceptional”
scenarios where both the front-end and back-end of the web
application are used. The selection of alternate flows also
depends on the “likelihood of breaking” as mentioned by one
of the respondents. Moreover, one tester said that the “80/20
principle usually does apply”. This was a reference to the
Pareto principle which states that 80% of the consequences
(alternate flows) originate from 20% of the causes (parts of
code or functionalities) [10]. About choosing test inputs, the
testers noted that boundary testing was a good approach to
test both positive and negative scenarios. One of the testers
said that “usage-based testing could be considered as the most
commonly used option”.

4



C. Implement end-to-end test cases

All the testers agreed that Selenium and Cypress are the best
approaches for implementing end-to-end test cases. One of the
testers said, “these are the easiest options to implement end-
to-end tests”. The other options, such as visual-based locators,
are not particularly applicable for testing big web applications
where many different scenarios have to be considered.

D. Interview results

The key points that were identified in the interviews are:
1) The most important functionality of the web application

is subject to the current iteration in the development of
the project. Important functionality can be found in the
product backlog where the most important user stories
are marked with tags or are in the priority queue.

2) User stories are prioritized by the product owner, who
should always be consulted if it is not clear which
functionality is most important.

3) Low-level test cases, for testing e.g., small bug fixes, or
small feature updates with low impact, can be omitted.

4) The number of alternate flows depends on the function-
ality being tested. End-to-end test cases should target
broader scenarios involving both client and server side.

5) The 80/20 Pareto rule [10] applies on alternate flows, i.e.,
most or 80% of alternate flows are caused by a small part
or 20% of the code, or a functionality.

6) Data inputs for test cases are commonly chosen using
usage-based testing and boundary testing.

IV. METHOD

From the literature review and interviews we now define our
step-by-step method to derive end-to-end test cases from user
stories. We describe three top-level steps: Select User Story
(A), Transform User Story into Test Cases (B), and Implement
Test Cases (C), which are each refined into smaller sub-steps.

A. Select user story

The first step in the method is to select the user stories for
which to develop end-to-end test cases. From the best practices
for end-to-end testing (Subsection II-A) and the interviews
results (Section III), we identified the following guidelines that
should be taken into account for this selection:

1) Identify important functionality : The user story which
defines the most important functionality of the web
application should be chosen first (see Subsection II-A
(1)). In an agile development environment, the Product
Owner is responsible for defining user stories and priori-
tizing important functionality for each iteration. He either
marked user stories with priorities, or can be asked to
point out the most important user stories that should be
tested (see Subsection III-D(1) and (2)).

2) Omit low-level user stories: User stories that define
requirements that are covered by unit tests should be
omitted (see Subsection II-A (3)). These user stories can
be related to small bug fixes or a small feature update

that does not have much impact on the web app (see
Subsection III-D(3)).

B. Transform user story into test cases

The second step in the method is to transform the user story
into end-to-end test cases. To do this we follow the three steps
we identified in our literature review (Subsection II-B).

1) Identify flow: First identify the basic flow of the user
story. This basic flow can usually be divided into user
actions (see Subsection II-A (2)). Additionally, identify
the alternate flows of the user story. Alternate flows can
be found by considering alternatives for the user action
from the basic flow. It is important to note that there
can be many alternate flows related to one user action
as compared to the others (see Subsection III-D (4) and
(5)). We note that identifying basic and alternate flows
is a creative process. However, to test an application
thoroughly, one should aim at finding all workflows that
a user could use (Subsection II-A (4)).

2) Develop use-case scenarios: Based on the basic and alter-
nate workflows, determine the different paths that could
be followed by the user. A table like Table III can be used
to keep track of each scenario. Use case scenarios should
be worked out for complex cases involving multiple
alternate flows, if possible, to increase effectiveness of
testing (Subsection II-A (4)).

3) Define test cases: Identify the user actions, data inputs,
and expected results for each use-case scenario, as in
subsubsection II-B3. Data inputs can be chosen using one
of the standard data selection methods from subsubsec-
tion II-B3: boundary value, random, partition, or usage-
based testing. We note that while the interviewed testers
indicated that usage-based and boundary value testing
occurs most, choosing one of these two methods does
not always make sense, and depends highly on the data
domain. For example, if a text field allows any text, there
are no boundaries. Furthermore, it is probably insufficient
to only test passwords that have been used before.

C. Implement test cases

The test cases defined in the previous step can be imple-
mented using a programmable DOM-based approach using
tools such as the Selenium Web Driver or Cypress (see
Subsection II-C). We structure the implementation of test case
code, according to the test definitions, as follows:

1) Implement user-actions: Implement each user action with
the help of DOM-based commands to execute the ac-
tion in the web application. Each user action can be
implemented with a method definition. If the user action
requires use of test inputs, then these test inputs are ar-
guments of the method. If a user action requires multiple
clicks, and/or filling in multiple fields, etc., then we split
the user action in multiple implementation actions and
define them with individual method definitions (for ease).
For example, submitting a blog consists of (1) typing
the text in the form and (2) pressing the “Submit blog”

5



Test inputs
Scenario name User Actions Random testing, Partition testing, Usage-based testing Expected result

Email Password Date Times Client email Session form
Event scheduled successfully Login, Create, Submit valid valid valid valid valid non-empty Success notification

Unidentified professional Login random random - - - - Error notification
Invalid date-field Login, Create, Submit valid valid invalid valid valid - Error notification

Invalid time-frame Login, Create, Submit valid valid valid invalid valid non-empty Error notification
No clients chosen Login, Create, Submit valid valid valid valid empty non-empty Error notification

Invalid client email Login, Create, Submit valid valid valid valid invalid - Cannot click save

Table IV: Test case definitions for MyDay case study.

button. These can be treated as 2 implementation actions
of a single user action “Submit Blog”.

2) Implement test case definitions: Implement each test case
definition, i.e. each row of the table, with a method
that invokes the user actions defined earlier. Sleep/wait
commands should used between user actions to account
for the time taken for a page or DOM elements on a
page to load. Concrete input values are passed via the
arguments of the user actions. These inputs are chosen
according to the strategies chosen in the test case defini-
tion. Some creativity of the tester may be applied here to
choose ‘interesting’ inputs. After calling the methods of
the user actions, the test case method asserts the expected
result. For example, by asserting that the message of a
notification contains a word like “Success”. This way,
any unexpected result of executing this test case will be
reported.

3) Execute all test cases automatically: Implement a main
method calling the methods of all test case definitions.

V. CASE STUDIES

This section analyzes the applicability of the method of Sec-
tion IV by doing a case study for a sample of three deployed
real-world web applications: MyDay, VRM, and UTwente
people page. The MyDay application is a scheduling applica-
tion for appointments. The VRM application is a monitoring
application for sensor data from field devices. The UTwente
people page enables searching for UTwente employees. These
web applications belong to different application domains.

In the following subsections, we discuss each case study.
First, we provide a more detailed description of what the web
application does, the technologies it uses, and the selected user
story. After that, we transform the user story in test cases, as
we described in our literature review: we list the basic and
alternate flows, work out the use case scenarios, and define
the test cases. Finally, we provide some details about the
implementation of the end-to-end test cases and give the results
of executing the test cases.

For each case study, we implement test cases using Python’s
built-in unit testing framework, and the Selenium Web driver
[28]. We chose to use Selenium’s web driver for Chrome, but
this can be easily adapted to use other browsers like Firefox,
or Safari. All test cases have been developed by following
the best practices for using the Selenium web driver [24].
For example, the Page-Object-Model (POM) has been used.
POM is a design pattern in Selenium that stores all the web

Scenario Name Starting Flow Alternate
Event scheduled successfully Basic Flow

Unidentified professional Basic Flow 1
Invalid date-field Basic Flow 2

Invalid time-frame Basic Flow 3
No clients chosen Basic Flow 4

Invalid client email Basic Flow 5

Table V: Use case scenarios for MyDay case study.

elements in an object repository. Moreover, if IDs have been
used in HTML tags, they are used as the primary web element
locators. Only if IDs are not provided, other locators such as
the CSS class name and XPath locators are used. We provide
the code of the implemented test cases in our artefact [3].

A. Case 1: MyDay: scheduling web application

MyDay is an appointment scheduling application which
connects sports professionals with their clients. The web
application API is built mainly using PHP and the front-end
of the application is built with Vue which is a JavaScript
framework. We choose the following user story for this case
study, as it represents the main workflow of the application:

As a professional, I want to schedule a session with a client.

1) Transform user story into test cases:

Basic Flow
1) Login: The professional accesses the MyDay web app,

the professional clicks “Login”, the system asks for
email and password, the professional is authenticated
and redirected to the MyDay Professional homepage.

2) Create event: Professional clicks “Create Event”, the
system displays the drop-down menu, professional
clicks “Create an event with client”, and the system
displays session form.

3) Submit event: Professional fills session form, profes-
sional clicks “Save”, the system notifies the profes-
sional that the event has been created succesfully.

Alternate Flow 1 Unidentified professional : Invalid user
email or password entered for Login.

Alternate Flow 2 Invalid date field : Invalid (past) date se-
lected for scheduling an event.

Alternate Flow 3 Invalid time-frame : Invalid time period
selected for scheduling an event.

Alternate Flow 4 No clients chosen : No clients are selected
for creating an event.

6



Test Inputs
Scenario Name User Actions Partition testing, Random testing Expected Result

Email Password Device id
User can monitor device Login, Navigate, Monitor valid valid random or as in user story Display data

Unidentified user Login invalid invalid - Login error
No access to device Login, Navigate valid valid random Error notification

Device error Login, Navigate valid valid random Error notification

Table VI: Test case definitions for VRM case study.

Alternate Flow 5 Invalid client email : An invalid email is
entered to create an event.

The use case scenarios are shown in Table V.
For choosing the test inputs for test cases, we use random

testing and partition testing. A randomly generated, invalid
input for the email and password fields should produce a
login error and a randomly generated input for the client
email should alert the user. Furthermore, an invalid (past) date-
field or an invalid time frame should alert the user while a
valid date and time should produce no errors. Also, an empty
session form should alert the user but a non-empty form should
produce no errors. Table IV shows all test case definitions.

2) Implementation of end-to-end test cases: Next, we give
some implementation details. For the “Login” user action, we
locate the username and password fields with the help of “id”
tags and type the text in these fields by using selenium’s built
in functions. The “Submit event” user action is broken down
into various implementation actions such as “choose date”,
“choose time” and “enter email”, which are each implemented
with a method definition, with arguments for the test inputs.
For the Event scheduled successfully test case, the expected
result is checked by asserting that the raised notification has
a “Success” message. Similarly, for the other test cases, an
“Error” notification is asserted. For the test case Invalid client
email, we assert that the “Save” button cannot be clicked. This
is done by catching the exception from the click method of
this button.

3) Results: Four out of six test cases did not produce the
expected results. These test cases were related to the following
alternate Flows : Invalid date-field and Invalid client email.
Two bugs were discovered:

• a professional can create an event with an invalid client
email, and

• a professional can submit an event with an invalid date.

B. Case 2: VRM: remote monitoring web application

VRM is a remote monitoring web application that allows
users to remotely control energy systems such as freezers, solar
chargers, and water tanks. The application performs real-time
data collection on the devices and displays this to the user.
The application API is built using PHP. The front-end of the
application is built with JavaScript, Vue, and Less. Since the
sole purpose of this application is to monitor devices in real-
time, we select the following important user stories:

As a VRM user, I want to monitor:
1) the time of the device that was updated the latest
2) the temperature of the water tank and the freezer,

Scenario Name Starting Flow Alternate
User can monitor device Basic Flow

Unidentified user Basic Flow 1
No access to device Basic Flow 2

Device error Basic Flow 3

Table VII: Use case scenarios for VRM case study.

3) the water level of the water tank, and
4) my device’s alarms.

1) Transform user story into test cases: In this case study,
we formulate the actions of the basic and alternate flows for
any device. The device id is then a test input for the test cases.
Basic Flow

1) Login: User navigates to the VRM web application and
logs in with his email and password. System displays
the homepage.

2) Navigate to device: User navigates to the device list,
the system displays all the installed devices. The user
selects a device to monitor by the “id”.

3) User monitors device: The user monitors a device
by clicking the device name, the system displays the
relevant device information.

Alternate Flow 1 Unidentified user : Invalid user email or
password entered for Login.

Alternate Flow 2 No access to device : The device is not
accessible to this user.

Alternate Flow 3 Device error : Device not connected or
data cannot be read from the device.

The use case scenarios of the VRM case study are shown in
Table VII, and the test cases definitions in Table VI. Like for
MyDay, test inputs for email and password are chosen using
random and partition testing. In the test case User can monitor
device we test the devices as far as this is specified by the user
story: we check the general field displaying the time (1), the
temperature of devices water tank and freezer (2), the level of
device water tank (3), and the alarms of a random device (4).
In other test cases, a random device id is used as test input as
well.

2) Implementation of end-to-end test cases: In this case
study, the ‘Login’ user action is implemented similarly as for
MyDay. The ‘Navigate’ user action is broken down 2 imple-
mentation actions namely “navigate to device list” and “get
device by id”. Furthermore, the “Monitor” user action is also
divided into several implementation actions such as “check last
updated” and “check water tank level”. The expected result of
displaying data is implemented by asserting that the required

7



Test inputs
Scenario name User Actions Partition testing, Usage-based testing Expected result

Query Filter
User can search for contact details Search,Filter,Click UT employee none Display contact details

Unidentified employee Search non-UT employee none No results
Non-matching filter Search,Filter UT employee too restrictive filter No results

Table VIII: Test case definitions for UTwente people page case study.

information is really present, i.e. the respective DOM elements
needs to be not “None” or “null”. For test cases No access to
device and Device error, we assert that a notification with an
“Error” message is raised. We note that the Device error test
case is only executable when we have a device which is not
connected to the hardware.

3) Results: All test cases produced the expected results.

C. Case 3: UTwente people page: searching web application

The University of Twente people page is a searching
web application used by university students and employees
to search for information about university employees. The
website is built using PHP and several external libraries to
search the university database. Considering the main use case
is searching, we select the following user story:

As a student, I want to search for the contact details of a
UTwente employee

1) Transform user story into test cases:
Basic Flow

1) Search: User navigates to the UTwente people page
and makes a query in the search bar. System displays
the results.

2) Filter: User filters the results by choosing one of the
filters. The system refines the result.

3) Click to see contact details: User clicks on one of the
results, and then on the “Contact” button, to see the
contact details.

Alternate Flow 1 Unidentified employee : Query does not
match any persons in the database.

Alternate Flow 2 Non-matching filter : The applied filter re-
turns no results for the query.

The use case scenarios are shown in Table IX.
For the test case definitions, shown in Table VIII, we

select test inputs using partition and usage-based testing. With
partition testing, we differentiate between UT employees and
non-UT employees. We choose a known UT employee (i.e.
Petra van den Bos) and a known non-UT employee (i.e.
Humaid Mollah) for the test cases: User can search for contact
details, and Unidentified employee, respectively. The expected
results are displaying the contact details of Petra and no results
for searching Humaid. For the Non-matching filter test case,
we choose the same known UT employee, but select a filter
such that no results are displayed.

2) Implementation of end-to-end test cases: Each user
action discussed in the basic flow is implemented with one
method. The “search” user action is implemented by using
selenium’s built in functionality for typing text. The method

Scenario Name Starting Flow Alternate
User can search for contact details Basic Flow

Unidentified employee Basic Flow 1
Non-matching filter Basic Flow 2

Table IX: Use case scenarios for UTwente people page case
study.

for the “filter” user action takes one of the 3 filters as an
argument, and locates and activates the respective filter using
its class name tag. Like for the VRM case study, displaying
contact details is checked by asserting that elements are not
“None” or “null”. To check for no result, we assert that click-
ing on a result element raises a “NoSuchElementException”.

3) Results: All test cases produced the expected results.

VI. CONCLUSION

We have developed a user-story-driven approach for writing
and implementing end-to-end test cases for web applications
developed in an agile environment. We provide a three-step
method for deriving executable end-to-end test case imple-
mentations from user stories. Our method is based on a
literature review and interviews with testers. We demonstrated
the method’s applicability with three case studies.

In future work we would like to automate (parts of) our
method. For example, given a test definition table (e.g.,
Table II), we could automatically generate a code template.
Furthermore, we could provide tooling to support the tester
taking all steps for transforming user stories into test case
definitions. Moreover, we could use automatic approaches
for choosing test inputs [22]. Additionally, we would like to
perform more case studies to further improve our method and
gain additional confidence for the applicability of our method.
Lastly, we are interested in combining our work with model-
based testing approaches, to increase the number and coverage
of test cases [5].

REFERENCES

[1] Allala, S.C., Sotomayor, J.P., Santiago, D., King, T.M., Clarke, P.J.:
Towards transforming user requirements to test cases using MDE and
NLP. In: 2019 IEEE 43rd COMPSAC. vol. 2, pp. 350–355 (2019), https:
//doi.org/10.1109/COMPSAC.2019.10231

[2] Apostolov, A., Vandiver, B.: End to end testing - What should you know?
In: 2014 67th Annual Conference for Protective Relay Engineers. pp.
125–131 (2014), https://doi.org/10.1109/CPRE.2014.6798999

[3] Artefact of this paper, https://github.com/hnm27/userstories-to-testcases,
Containing: executable case study test cases, and interview transcripts.

[4] Bai, X., Tsai, W., Paul, R., Shen, T., Li, B.: Distributed end-to-end
testing management. In: Proc. of 5th IEEE EDOC. pp. 140–151 (2001),
https://doi.org/10.1109/EDOC.2001.950430

[5] van den Bos, P., Tretmans, J.: Coverage-based testing with symbolic
transition systems. In: Beyer, D., Keller, C. (eds.) TAP. pp. 64–82.
Springer, Cham (2019), https://doi.org/10.1007/978-3-030-40914-2 10

8

https://doi.org/10.1109/COMPSAC.2019.10231
https://doi.org/10.1109/COMPSAC.2019.10231
https://doi.org/10.1109/CPRE.2014.6798999
https://github.com/hnm27/userstories-to-testcases
https://doi.org/10.1109/EDOC.2001.950430
https://doi.org/10.1007/978-3-030-40914-2_10


[6] Brucker, A.D., Herzberg, M.: A formal model of the document object
model. Archive of Formal Proofs (December 2018), https://isa-afp.org/
entries/Core DOM.html

[7] Chopade, M.R.M., Dhavase, N.S.: Agile software development: Positive
and negative user stories. In: Proc. of 2nd I2CT. pp. 297–299 (2017),
https://doi.org/10.1109/I2CT.2017.8226139

[8] Cohn, M.: User Stories Applied: For Agile Software Development.
Addison-Wesley signature series, Addison-Wesley (2004), https://books.
google.nl/books?id=SvIwuX4SVigC

[9] Diao, Y., Hellerstein, J., Parekh, S., Shaikh, H., Surendra, M.: Control-
ling quality of service in multi-tier web applications. In: Proc. of 26th
IEEE ICDCS. pp. 25–25 (2006), https://doi.org/10.1109/ICDCS.2006.23

[10] Dunford, R., Su, Q., Tamang, E.: The pareto principle. The Plymouth
Student Scientist 7, 140–148 (2014)

[11] Godefroid, P.: Random testing for security: Blackbox vs. whitebox
fuzzing. In: Proc. of the 2nd RT. p. 1. Assoc. for Computing Machinery,
New York, NY, USA (2007), https://doi.org/10.1145/1292414.1292416

[12] Granda., M.F., Parra., O., Alba-Sarango., B.: Towards a model-driven
testing framework for GUI test cases generation from user stories. In:
Proceedings of the 16th ENASE. pp. 453–460. INSTICC, SciTePress
(2021), https://doi.org/10.5220/0010499004530460

[13] Gundecha, U., Avasarala, S.: Selenium WebDriver 3 Practical Guide:
End-to-end automation testing for web and mobile browsers with Se-
lenium WebDriver, 2nd Edition. Packt Publishing (2018), https://books.
google.nl/books?id= AhnDwAAQBAJ

[14] Gutiérrez, J.J., Escalona, M.J., Mejı́as, M., Torres, J.: An approach to
generate test cases from use cases. p. 113–114. ICWE ’06, ACM, New
York, NY, USA (2006), https://doi.org/10.1145/1145581.1145606

[15] Heumann, J.: Generating test cases from use cases. The ra-
tional edge 6(01) (2001), https://www.researchgate.net/publication/
220724437 Generating Test Cases from Sequences of Use Cases

[16] Leotta, M., Clerissi, D., Ricca, F., Tonella, P.: Capture-replay vs.
programmable web testing: An empirical assessment during test case
evolution. In: Proc. of 20th WCRE. pp. 272–281 (2013), https://doi.org/
10.1109/WCRE.2013.6671302

[17] Leotta, M., Clerissi, D., Ricca, F., Tonella, P.: Ch. 5 - approaches and
tools for automated end-to-end web testing. Adv. in Comp., vol. 101, pp.
193–237. Elsevier (2016), https://doi.org/10.1016/bs.adcom.2015.11.007

[18] Ma, X., Wang, N., Xie, P., Zhou, J., Zhang, X., Fang, C.: An automated
testing platform for mobile applications. In: 2016 IEEE International
Conference on Software Quality, Reliability and Security Companion
(QRS-C). pp. 159–162 (2016), https://doi.org/10.1109/QRS-C.2016.25

[19] Massod, M., Iqbal, M., Khan, M., Azam, F.: Automated user story
driven approach for web based functional testing. International Journal
of Computer and Information Sciences 11 (06 2017)

[20] Offutt, J.: Quality attributes of web software applications. IEEE Software
19(2), 25–32 (2002), https://doi.org/10.1109/52.991329

[21] Pelivani, E., Cico, B.: A comparative study of automation testing
tools for web applications. In: 2021 10th Mediterranean Conference on
Embedded Computing (MECO). pp. 1–6 (2021), https://doi.org/10.1109/
MECO52532.2021.9460242

[22] Popić, S., Pavković, B., Velikić, I., Teslić, N.: Data generators: a
short survey of techniques and use cases with focus on testing. In:
2019 IEEE 9th ICCE. pp. 189–194 (2019), https://doi.org/10.1109/
ICCE-Berlin47944.2019.8966202

[23] Ramachandran, M.: Testing software components using boundary value
analysis. In: 2003 Proceedings 29th Euromicro Conference. pp. 94–98
(2003), https://doi.org/10.1109/EURMIC.2003.1231572

[24] Ramya, P., Sindhura, V., Sagar, P.V.: Testing using selenium web driver.
In: Proc. of 2nd ICECCT. pp. 1–7 (2017), https://doi.org/10.1109/
ICECCT.2017.8117878

[25] Regnell, B., Runeson, P., Wohlin, C.: Towards integration of use case
modelling and usage-based testing. Journal of Systems and Software
50(2), 117–130 (2000), https://doi.org/10.1016/S0164-1212(99)00084-9

[26] Ricca, F., Stocco, A.: Web test automation: Insights from the grey
literature. In: Bureš, T., Dondi, R., Gamper, J., Guerrini, G., Jurdziński,
T., Pahl, C., Sikora, F., Wong, P.W. (eds.) SOFSEM 2021: Theory and
Practice of Computer Science. pp. 472–485. Springer International Pub-
lishing, Cham (2021), https://doi.org/10.1007/978-3-030-67731-2 35

[27] Tsai, W., Bai, X., Paul, R., Shao, W., Agarwal, V.: End-to-end integration
testing design. In: Proc. of 25th COMPSAC. pp. 166–171 (2001), https:
//doi.org/10.1109/CMPSAC.2001.960613

[28] Web driver Selenium, https://www.selenium.dev/documentation/
webdriver/, retrieved January 18, 2023

[29] Weyuker, E.J., Jeng, B.: Analyzing partition testing strategies. IEEE
Trans. Softw. Eng. 17(7), 703–711 (jul 1991), https://doi.org/10.1109/
32.83906

9

https://isa-afp.org/entries/Core_DOM.html
https://isa-afp.org/entries/Core_DOM.html
https://doi.org/10.1109/I2CT.2017.8226139
https://books.google.nl/books?id=SvIwuX4SVigC
https://books.google.nl/books?id=SvIwuX4SVigC
https://doi.org/10.1109/ICDCS.2006.23
https://doi.org/10.1145/1292414.1292416
https://doi.org/10.5220/0010499004530460
https://books.google.nl/books?id=_AhnDwAAQBAJ
https://books.google.nl/books?id=_AhnDwAAQBAJ
https://doi.org/10.1145/1145581.1145606
https://www.researchgate.net/publication/220724437_Generating_Test_Cases_from_Sequences_of_Use_Cases
https://www.researchgate.net/publication/220724437_Generating_Test_Cases_from_Sequences_of_Use_Cases
https://doi.org/10.1109/WCRE.2013.6671302
https://doi.org/10.1109/WCRE.2013.6671302
https://doi.org/10.1016/bs.adcom.2015.11.007
https://doi.org/10.1109/QRS-C.2016.25
https://doi.org/10.1109/52.991329
https://doi.org/10.1109/MECO52532.2021.9460242
https://doi.org/10.1109/MECO52532.2021.9460242
https://doi.org/10.1109/ICCE-Berlin47944.2019.8966202
https://doi.org/10.1109/ICCE-Berlin47944.2019.8966202
https://doi.org/10.1109/EURMIC.2003.1231572
https://doi.org/10.1109/ICECCT.2017.8117878
https://doi.org/10.1109/ICECCT.2017.8117878
https://doi.org/10.1016/S0164-1212(99)00084-9
https://doi.org/10.1007/978-3-030-67731-2_35
https://doi.org/10.1109/CMPSAC.2001.960613
https://doi.org/10.1109/CMPSAC.2001.960613
https://www.selenium.dev/documentation/webdriver/
https://www.selenium.dev/documentation/webdriver/
https://doi.org/10.1109/32.83906
https://doi.org/10.1109/32.83906

	Introduction
	Literature Review
	Best practices for end-to-end testing
	Generation of test cases from user stories
	Identify flow
	Develop use-case scenarios
	Define test cases

	Implementation of end-to-end tests

	Interviews
	Determine important functionality to test
	Develop test cases scenarios from user stories
	Implement end-to-end test cases
	Interview results

	Method
	Select user story
	Transform user story into test cases
	Implement test cases

	Case studies
	Case 1: MyDay: scheduling web application
	Transform user story into test cases
	Implementation of end-to-end test cases
	Results

	Case 2: VRM: remote monitoring web application
	Transform user story into test cases
	Implementation of end-to-end test cases
	Results

	Case 3: UTwente people page: searching web application
	Transform user story into test cases
	Implementation of end-to-end test cases
	Results


	Conclusion
	References

