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Abstract—We combine Behavior-Driven Development (BDD)
and formal Model-Based Testing (MBT), to benefit from the
smooth collaboration among stakeholders in BDD, and from au-
tomated testing with precise test cases in MBT. However, textual
BDD scenarios written in natural language are not sufficient for
formal MBT, as they might be ambiguous and lack the required
information for testing. In this paper, we define a building block
for the integration of BDD and MBT: an intermediate language,
IBDD, to fill the gap between textual scenarios and formal models.
Furthermore, we formally translate IBDD to BDD Transition
Systems, which are formal models for BDD scenarios. Finally,
we introduce three approaches for transforming BDDTSs into
Symbolic Transition Systems, for which state-of-the-art MBT test
generation algorithms are available.

Index Terms—Behavior-Driven Development, Model-Based
Testing, Symbolic Transition Systems, BDD Transition Systems

I. INTRODUCTION

The complexity and size of software systems is ever
increasing. Consequently, testing such systems is increas-
ingly challenging, taking ever more time and effort. Various
testing techniques and approaches have been proposed and
investigated to tackle these testing challenges, each having
its strengths and weaknesses. Two of these approaches are
Behavior-Driven Development and Model-Based Testing. This
paper is aimed at combining these two approaches exploiting
their complementary strengths.

MBT. Model-Based Testing is a form of black-box testing
where test cases are algorithmically generated from a model
of the system-under-test (SUT). This model is an abstract and
formal description of the behavior of the SUT, and serves as
the specification for generating tests. Though MBT, in particu-
lar using formal models, has been extensively researched and a
reasonable number of commercial and open-source tools exist,
there is no widespread use of MBT in industry as yet. The most
important factor hindering its adoption is the need to construct,
maintain, and understand these formal models. This requires
skills and experience in modelling, abstract thinking, and the
use of specialized modelling languages, which often are not
optimized towards readability and understandability for non-
experts such as developers, customers, business developers,
and other stakeholders. This complicates communication with

these parties and hinders obtaining feedback and validating
MBT models, i.e., getting confidence that the model really
models what was intended.

BDD. Behavior-Driven Development is an agile approach to
software specification and testing, which is popular in the
industry nowadays. Unlike MBT, it originates from software
engineering practice. Communication and shared understand-
ing of what the software under development shall do, among
all stakeholders of the software, is a key goal of BDD [1]], [2],
[3]. To achieve this, instances of required software behavior
are written in structured natural language in so-called BDD
scenarios, also referred to as specification by example. The
most popular style to write these scenarios is the Given-When-
Then style as advocated in the Gherkin notation: Given a
precondition for the required system state, When an action
is performed on the system, Then the specified actions and
resulting state are expected.

BDD scenarios can be used as the basis for (among other
things) test case derivation. This, however, is not completely
automatic. Though tools like Cucumber [4] and SpecFlow
[S] provide support for transforming a BDD scenario into a
test case, a developer still has to define how a Given-state
is reached, how When-actions are performed, and how Then-
results are checked. Moreover, BDD scenarios, being informal,
are not always unambiguous, precise, and consistent. This
means that a direct, unambiguous transformation from a BDD
scenario into an automated, executable test is not possible, but
rather depends on the tester’s interpretation and effort. This
negatively impacts the quality of the derived tests.

BDD for MBT. As follows from the discussion above, BDD
and MBT are complementary in their strengths and weak-
nesses. The goal of our research is therefore to combine their
strengths and arrive at a testing approach where people can
develop, understand, and communicate using BDD scenarios,
which then serve as the source for the MBT models, which
in turn enable the use of state-of-the-art MBT test generation
algorithms. This overall approach is depicted in

In our previous paper [6] we presented the initial ideas, and
experiments with manual transformation from BDD scenarios
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Fig. 1: The flow from BDD Scenarios to MBT. The contribu-
tion of this paper lies in the red and yellow part (dashed box).

to a formal MBT model, on which existing test generation
techniques are applied [7], [8]. On the one hand, that paper
shows that such a manual transformation is feasible. On the
other hand, it concludes that the transformation is not easily
automated because of the large discrepancy between textual
BDD scenarios and formal MBT models. In this paper, we
aim to (partially) bridge this gap by defining an infermediate
language.

IBDD. The intermediate language, coined /IBDD, follows the
structure of the Given-When-Then style, but it adds precision
by incorporating formal aspects of Symbolic Transition Sys-
tems (STS) [7]. We define IBDD in a hybrid grammar, where
part of the grammar is in Backus-Naur Form (BNF), but some
grammar symbols, which are non-terminals from the BNF
point of view, are formal structures appearing in STS, not
further elaborated in BNF.

In addition to the grammar, IBDD defines the concept of
Domain-Specific Information (DSI), which formally captures
all relevant information about the domain, for example, type
definitions for the global state of the SUT. This type of
information is known to developers but is not included in
the BDD scenarios themselves. By defining IBDD we make
explicit which MBT model elements can be obtained directly
from BDD scenarios, which information necessary for making
a formal MBT model is missing or implicit, and which aspects
of BDD scenarios are ambiguous.

It is important to point out that IBDD is not intended as
a language for practitioners to write their scenarios in: the
(manual) translation from BDD scenarios to IBDD requires
special expertise, as the IBDD syntax is geared towards formal
manipulation rather than readability. In that sense, it is only a
step towards bridging the gap.

IBDD shall support the transformation from BDD scenarios
to formal models, and, in the end, the building of a tool
that supports this transformation. Referring to the
first step, from BDD scenarios to IBDD, is currently manual.
However, in the future, we see possibilities to automate
the conversion from natural language BDDs to IBDD, e.g.

via natural language processing [9], [10], [11]. The second
step transforms the IBDD term into BDD Transition Systems
(BDDTS), a formal model that is a variant of STS. The next
step is the formal transformation of a BDDTS to an STS.
This involves extracting the relevant information for the STS
from the BDDTS, and adding specific testing information.
Finally, existing state-of-the-art algorithms [8] can be used to
automatically generate test cases from the STS.

It is worth pointing out that a core benefit of our overall
approach is the ability to compose smaller BDDTSs into larger
ones (gray in [Figure 1), along the lines of [6]. However, this
is not the topic of the current paper.

This paper presents the definition of IBDD and BDDTS, and
the translation from one to the other. We also address several
ways to generate STSs from BDDTSs, based on different
possibilities for satisfying the precondition (in the Given-
clause) and checking the postcondition (in the Then-clause).
Overview. The next section introduces our running example of
an industrial printer. Section [[T]] gives some formal background
information about mathematical notation, the used algebraic
concepts, and formal grammar, all of which are used in the
definition of IBDD in Section [Vl Section [V]defines the formal
structure of BDDTS, after which SectionM] presents the trans-
formation from IBDD to BDDTS. The transformation step
from BDDTS to STS is presented in Section Section |VIII
discusses related work and Section summarizes the future

work required to cover completely.
II. MOTIVATING EXAMPLE

We provide 3 real-world scenarios describing an industrial
printer to show the applicability of our approach in this paper.
We follow the Given-When-Then style to write our sce-
narios. Each scenario starts with a title describing what the
scenario is about, followed by scenario steps.
Scenario 1 : A controller job is added to the scheduled jobs
after a job file has been submitted.
Given a job file
When the operator submits the job file using (Submission
method)
Then the printer appends a new controller job to the sched-
uled jobs
And the controller job is of type (Job type)
In this scenario, Submission method is either LPR, IPP, JMF,
or Socket, and Job type is either Production or Streaming.
Scenario 2: A controller job of type Production is moved to
the printed jobs the moment printing completes
Given a controller job is in the scheduled jobs
And the controller job is a production job
When the printer starts printing the controller job
And the printer completes printing the controller job
Then the controller job is in the printed jobs
Scenario 3: At printer restart, the printer controller will clean
up printed jobs
Given the printer controller is running
When the operator restarts the printer controller
Then the printed jobs clean up is executed



III. BACKGROUND

Given two sets A, B, we use f : A — B (or equivalently
f € B*) to denote a function f from A to B.

A. Algebraic concepts

In the following, we review common algebraic concepts like
sorts, functions, variables, terms, and assignments.

Sorts. We assume a universe S of sorts. In this pa-
per, sorts can be: (i) primitive data types (like Bool or
Int), (ii) composite types C(di: $1,...,dy: Sy,), consisting
of multiple fields d; with their own sorts s; € S for
1 < i < n, (iii) enumerations, whose values are user-de-
fined names, (iv) list types [s], whose values are sequences
of some other sort s € S. Examples are the composite
type ControllerJob(id: Int, type: JobType, state: JobState),
and the enumeration JobType with values Production,
System, Streaming, ProofPrinting.

Functions and terms. We also assume a universe F of named
functions, in programming languages often alternatively called
methods or procedures. Each function f € F has a finite
(possibly empty) list of argument sorts 7' f,..., 7 f € S
(where «f is the arity of f) and a result sort pf € S, denoted
as f: 7wl f,..., 7 f — pf. For example, max: Int, Int — Int
is a function with two Int arguments and Int result. A function
¢ with awc = 0 is called a constant, in which case we write
c: pc; e.g. true : Bool. Other examples of functions are:

« For every composite type s = C(dy: s1,...,dp: Sp) €
S, a constructor C: sq,...,8, — s and field selector
functions d;: s — s; for 1 < i < n. Note that d; applied
to « € s is usually denoted x.d; rather than d;(x);

o For every enumeration s € S, constants ¢ : s for each of
the user-defined names of s;

o For every list type [s], functions is_empty : [s] — Bool
to test whether a list is empty, add: s, [s] — [s] to add an
element to the list, and is_in_list: s, [s] — Bool to test if
a certain value is in the list.

Furthermore, we assume a universe of sorted variables V. Each
v € V has an associated sort cv. The value for a variable is
not fixed but provided through an assignment (see below).
From functions and variables, we build terms, which have
derived sorts. Essentially, every variable v € V is a term of
sort ov, and if f € F and t; is a term of sort 7' f for 1 <
i < af, then f(t1,...,tay) is a term of sort ,ofP_-] We use
t : s to denote that ¢ is a term of sort s, and ot to denote that
(uniquely determined) sort s. The terms of sort s that contain
only variables from X C V are collected in 7,(X). A term ¢ is
called ground if ¢t € T,(0). We omit the sort subscript if it is
not relevant. We also write V; for the set of variables actually
occurring in ¢, i.e., the smallest set such that t € T (V;)
Example terms using a variable x : Int are: max(x, 3), and
ControllerJob(x, Production, Printing) (of respective sorts Int
and ControllerJob(id : Int, type : JobType, state : JobState)).

Tn addition we also use infix notation and parentheses as usual, for
functions that correspond to well-known primitive operators.

Terms of sort Bool are called predicates. Examples of
predicates are is_empty(z) (with ocx = [s] for some s € S)
or x = (5 + y) (with variables z,y : Int and functions
=: Int, Int — Bool and + : Int, Int — Int).

Assignments. An assignment A is a (mathematical) function
from variables to terms; to be precise, A € T(Y)X for sets
X,Y C V. For a variable z € X, we say that A assigns term
A(xz) € T(Y) to z. We use = := t to denote the assignment of
term ¢ to variable x; e.g., x := y + 1 denotes A € T ({y}){*}

with A(x) = y+ 1. As syntactic sugar, if ox = C(dy
S1y--.,dp : Sy) we also write z.d; := t (with 1 < i < n)
for z = C(Cdl, ey C.di_l, t, C.di+1, ‘e ,Cdn) (i.e., an

assignment that only changes field d;).

Semantics. The above concepts are all on the level of syntax.
In particular, terms are not yet evaluated. For the semantics, we
choose the “natural” interpretation of all sorts and functions.
This is not further elaborated here.

B. Grammars

We use the Extended BNF (EBNF) to define the IBDD
grammar. EBNF is a notation to describe the syntax and
structure of formal languages. The basic elements of EBNF
notation are given below:

Non-terminals are symbols that represent categories of
syntactic elements. They are typically defined using capitalized
words enclosed in angle brackets, e.g., (Statement).

Terminals are symbols that represent actual tokens or char-
acters. They are typically enclosed in single quotes, e.g., ‘if” or
‘4+’. Terminals are the basic building blocks of the language.

Production Rules define how non-terminals can be replaced
by a sequence of terminals and/or non-terminals. A production
rule consists of a non-terminal on the left side and a sequence
of terminals and non-terminals on the right side. Alternative
choices can be represented using the "|" symbol.

In addition to these fundamental elements, EBNF grammars
can incorporate regular expressions to describe patterns within
the language. In particular, the Kleene Star (x) denotes zero or
more occurrences of a given non-terminal symbol or sub-rule,
whereas the Kleene Plus (4+) denotes one or more occurrences.

IV. INTERMEDIATE BDD

In this section, we define the Intermediate Behavior-Driven
Development grammar (IBDD). The grammar is a represen-
tation of the structural assumptions we make about the BDD
scenarios for our modeling purposes. It employs a combination
of notations, incorporating elements from both EBNF and
mathematical notations derived from first-order logic.

A. Domain Specific Information

The IBDD grammar uses mathematical elements that
should be defined for the domain of the BDD sce-
nario, e.g. sort ControllerJob, function is_in_list, variable
SJL : [ControllerJob] and gate !printsa,r. Some of these el-
ements can be extracted from the textual BDD scenarios, but
others are implicit and need to be provided by domain experts.

Definition 1: A DSI is the tuple (S, F,V,G), where



S is the set of sort names.

F is the set of (well-defined) functions on sorts.

o V is the set of sorted variables. Variables are categorized
into three disjoint sets of global, local, and interaction
variables, each explained in

G is the set of gates, standing for interactions between a
system and its environment. G is partitioned into disjoint
sets of input gates G, (initiated by the environment/user,
prefixed by ‘?’) and output gates G, (initiated by the
system, prefixed by ‘!I’). Each ¢ € G has an associated
sequence of sorts og € §*, which determine the kind of
values that are communicated through interaction.

B. IBDD Grammar

Given a DSI, we now introduce the EBNF grammar of
IBDD. For each production rule, we provide an explanation
that also prescribes restrictions on terms where needed. Note
that we do not fully specify the syntax; instead, from some
point onwards we specify mathematical notation. This serves a
dual purpose: streamlining and simplifying the grammar while
closely aligning it with the formal model definition.

(Scenario) := (Given)(When){Then)

Description:

e The scenario consists of Given, When, and Then clauses.

o Given, and Then describe the expectations from the
system while When specifies the behavior of the system.

e Given an IBDD term, that specifies the sets of local
variables LV and interaction variables IV, the set of
global variables is derivable by computing V\ (LVUIV).

Given clause:

(Given) = ‘GIVEN’ (Declaration) ‘[" {Guard) ‘]’
(Declaration) == lvy,...,lv,

(Guard) == P | (Guard) ‘N (Guard)
Description:

e The Given clause represents the precondition of the
scenario (given by Guard) on global and local variables
(in which the local variables are given by Declaration)

e Declaration introduces local variables lv; € V for 1 <
i < n to the rest of the scenario (When and Then). Local
variables are scoped to the entire scenario.

o Guard represents the input guard for the scenario. Guard
is a conjunction (representing the And keyword in the tex-
tual given step) of predicates P. To have no precondition,
i.e. no restriction, choose predicate true for Guard.

e P € Tpooi(X) denotes a predicate on local and global
variables X C V.

When clause:

(When) = ‘WHEN’ (Switch)+
(Switch)
(Interaction) = g. ivy,...,iv,
(Condition) = B
(Assignment) == A

Description:

o When clause consists of one or more Switches. The
Kleene plus (+) in the grammar serves as a representation
of the sequential And in the textual scenario.

o Switch consists of an Interaction with the system with
corresponding Conditions and Assignments.

o Interaction consists of a gate g € G, followed by zero or
more distinct interaction variables iv; € V for1 < i <mn,
such that the sorts of the gate and interaction variables
match: o0g = oiv; - oiv,. Interaction variables are
scoped to a single switch, i.e. they may only be used
in the subsequent Condition and Assignment.

« Condition represents a constraint on variables, with a term
B € Tgoot(V) (which may be true).

o Assignment is an assignment function: A € T(V)¥X,
where X C V includes only local and global variables.

Then clause:
(Then) ==

Description:

‘THEN’ (Switch)x [ (Guard) |’

o Then clause is meant to represent the expected behavior of
the scenario, consisting of zero or more output Switches
and a post-condition Guard.

o Switch is the same as defined before in When, except that
the Interaction must have an output gate g € G,,.

o Guard defines the post-condition or output guard.

V. BDD TRANSITION SYSTEM

We define a BDD Transition System (BDDTS) as a variant
of the Symbolic Transition System (STS) [8].

Definition 2: An STS is a tuple ( L, ly, SV, i, IV, — ), where

e L is a set of locations.

e lgp € L is the initial location.

o SV C Vis a set of state variables containing both global
and local variables. They are accessible in the entire
transition §/ystem.

e i€ T(0)"" is the initial assignment of the state variables.

e IV is a set of interaction variables. We assume SV N
IV =0 and set V =45 SV UIV.

o = CLxGXIV*X Toot(V) x T(V)3V x L is the
switch relation. In a switch (I, g, tv;...iv,, @, a,l’) € —
the elements are called (source) location, gate, interaction
variables, guard, assignments, and (destination) location,
respectively. The interaction variables ivy,...,%v, are
distinct, and their sorts are compatible with those of the
gate: og = 0tV - - - 01Uy,

A BDDTS adapts the definition of STS by partitioning state
variables into local and global ones, adding a goal location
and input and output guards. The initial variable assignment is
omitted from a BDDTS (it will be added in the transformation
from BDDTS to STS, [section VII). We note that BDDTS are
also defined in [6], as the composition of BDD scenarios; but

:= (Interaction) (Condition) ( Assignment) here, a BDDTS represents a single BDD scenario.

Definition 3: A BDDTS is a tuple (L, lo, I, SV, IV, LV, —,
I1G, OG), where

e Elements L, [y, SV, IV,— are as in Definition
e lg € L is the goal location.



o LV C SV is the set of local variables. Variables SV\LV
are called global.

e IG € Tgool(SV) is the input guard of the BDDTS,
denoting the pre-condition of the initial location.

e OG € Tgool(SV) is the output guard, denoting the post-
condition of the BDDTS in the goal location.

VI. BDD TRANSLATION
A. Scenario to IBDD

In this section, we provide an informal translation from
textual scenarios to IBDD by example. We construct both the
IBDD term and the DSI. The IBDD term for BDD scenario 2
is as follows:

GIVEN CJ [is_in_list(CJ,SJL) A CJ.type = Production]
WHEN Iprintg.,.Cj

¢j.id = CJ.id A ¢j.state = Printing

Cl.state := ¢j.state

lpri Nteomplete-CJ

¢j.id = CJ.id A ¢j.state = Completed
ClJ.state := cj.state, PJL := add(CJ, PJL)

THEN [is_in_list(CJ, PJL)]

We construct this term as follows. Since scenario 2 starts with
‘Given a controller job’, a controller job should be a local
variable: CJ. The input guard then constitutes the rest of Given.
In particular, the guard includes global variables ‘scheduled
jobs list’, and ’printed jobs list’, represented as SJL and PJL.
For (When), we should seek 3 elements: gates with their
interaction variables, the conditions of the switches, and
assignments. The gates are the actions ‘starts printing’ and
‘completes printing’, so we identify respective gates !printsiart
and !printcomplete- Both actions are applied on ‘the controller
job’, so we identify respective interaction variable cj for
this. It is implicit in the BDD scenario what the condition
and assignment for the switches with gates !printgs and
Iprintcomplete Should be. For both switches, we expect that the
controller job from Given, i.e. CJ has the same id as cj, such
that CJ is actually being printed. From domain knowledge,
we extract that the state of the controller job should change
to Printing with gate !printgay and to Completed with gate
Iprintcomplete; SO We check this on cj, and update CJ.state
accordingly. In the switch of gate !printcomplete, We add CJ
to PJL to implement the domain knowledge that completing
means that the controller job is added to the printed jobs list.
Other variables keep their current value (and those assignments
are not written explicitly in the IBDD term).
For Scenario 2, the Then only contains a statement about
the expected state, so the output guard is: is_in_list(CJ, PJL).
Scenarios 1 and 3 have different formats for the Given.
Scenario 1 only declares a local variable, such that its Given
clause is just GIVEN JF [true]. Scenario 3 only has an input
guard and no local variables: GIVEN [is_running(CTRL)].
Additionally, scenario 1 has a switch in the Then. Choosing
JT and SM to store the Job type and Submission method and

using getJobType : SubmissionMethod — JobType to encode
the table, the Then clause becomes:

THEN !append. cj, sjl
cj.type = JT Asjl = SIL A JT = getJobType(SM)
CJ:= ¢}, SJL := add(CJ, SJL)
[is_in_list(CJ, SJL) A CJ.type = JT]

The DSI for the printing scenarios can be derived from the
three scenarios, except for the set of sort names, and with that
the sorts of functions and variables. For example, we should
have a sort ControllerJob for variables c¢j and CJ. Also, the
DSI could contain more variables, functions, and gates relevant
to the domain.

B. IBDD to BDDTS

This section defines the mapping between the IBDD (using
the DSI) and the BDDTS. Below we give an IBDD term that
is built from the terminals of the IBDD.

Definition 4: Given the IBDD term:

GIVEN vy, ..., lv, [IG]

WHEN gi1- iv(171)7 PN >iU(1,n1) B1 A1

9m- iv(m,1)> v 7iv(m,nm) By A

THEN Im+1- Z.'U(m-‘,-l,l)v cee 71'U(Tn+1,nm+1) Bm+1 Am+1

Im+k- iv(m-‘rk,l)a cee aiv(’rrL-i-k,’rL,,,Hrk) Bm+k Am+k
[0G]

where numbers m, k,n,n; € N for 1 < i < m + k and
m > 1 are used as indices for the switches of the IBDD term.
We define its BDDTS as ( L, lo,lq, SV, IV,LV— IG,O0G )
where:

e L = {lo,...,lm,-..,Lintx} is the set of designated
locations which we create for index 0 to m + k.

e lo is the location associated with the first IBDD switch.

o lg = Ik 1s the location of the last switch of the IBDD
term, which has associated OG.

e SV is the set of all (local and global) variables occur-
ring in any of the subterms (I/G, OG, A; or B; for
1 < i < m + k), minus the interactions variables IV
(defined below).

o IV ={ivg jy |1 <i<m+k,1 <5 <n;}is the set of
all the interaction variables associated with the gates.

o LV ={lv; | 1 <4 < n} is the set of all local variables
declared in Given.

« — = {(li—lagi,wi,BiaAi;li) | 1<i<m+ k‘}, with
Wi = 1W(14) " W(n,), 18 the set of switches from the
When and Then, plus respective source and destination
locations from L, to obtain a sequence of switches in the
BDDTS.

e IG and OG are as given in the IBDD term.

The BDDTS for scenarios 1,2 and 3 are depicted in



VII. BDDTS 1O STS

In this section, we discuss test case generation from indi-
vidual BDDTSs. This consists of transforming them to STSs
and then using techniques from [8] to generate test cases
with concrete values for interaction variables. We note once
more that our example BDDTS are just sequences of switches.
More elaborate (and interesting) cases will be obtained by first
composing BDDTSs, as in [6], and then generating test cases
from that model. However, the approaches of this section are
independent of the complexity of the BDDTS.

In the translation from BDDTS to STS, some choices have
to be made. A BDDTS prescribes input and output guards that
need to be checked on the state of the system. Furthermore,
BDDTSs have local variables whose value is not necessarily
uniquely specified by the condition of the Given clause. These
need to be resolved in testing, and how this is done depends
on whether the test interface allows the tester to retrieve the
internal state of the system, and in what way. Therefore, we
sketch three possible approaches, with different assumptions
on this test interface. We explain each approach by example
with the STS for the BDDTS of We note that these
three approaches are not an exhaustive list of all possibilities.

We assume that when a BDDTS is translated to an STS,
the writer of BDD scenarios can provide values for all global
variables, through an initialization function as defined in
Definition [2] These values then specify the expected values
in the scenario (which might be different from the actual
values in the system). For the local variables, values are not
predetermined but instead established during testing, since
they are restricted by the input guard but need not be unique.

Special gates approach. In this approach, we assume that
actual system values of local and global variables can be
retrieved from the system via additional switches, that are
prepended and appended to the BDDTS. These additional
switches use special check, retrieve, and choose gates that are
assumed to be gates of the DSI. The input and output guard of
the BDDTS are then checked with the values obtained from
the system. shows the resulting STS of BDDTS in
where changes w.r.t. the BDDTS are marked bold
and green. Its construction is done as follows:

o We prepend a sequence of switches with gates 7checkg;,
Iretrieveg, and !choose; to the initial location of the
BDDTS. With the input switch for 7checkgj, the system
is asked to provide its actual value of the scheduled jobs
list. Via the output switch !retrievey;, the system then
provides this value via interaction variable sjl. This value
should be the same as the value of global variable SJL,
as expressed by the condition sjl = SJL.

o Via the output switch with gate !choose, the system
provides a controller job value via the interaction variable
¢j, and hence chooses which controller job is used in
the scenario. The value is assigned to the local variable
CJ. Unlike !retrieve, a !choose switch does not need
to be preceded by an input switch to request a choice;
we assume the system executes !choose;; automatically

before !printsare. The condition of !choose; is the input
guard of the BDDTS, which is now checked on obtained
values SJL (equal to sjl of the previous switch) and cj.

» We append switches with gates ?checkg; and !retrievey
to the goal location of the BDDTS. The ?check,; requests
the system to provide the value of the printed jobs list
in the !retrievey; switch. The latter switch also has the
output guard as a condition such that it is checked on
the retrieved value of pjl with expected controller job
CJ. Moreover, the condition of !retrieve; checks that the
provided value of pjl is the same as PJL.

Interaction variables approach. In this approach, we again
assume that we can obtain values of variables from the system,
but this time the test interface is changed and there are gates
available in the DSI with interaction variables that can be
used to obtain values of local and global variables.
shows the resulting STS; again with changes w.r.t. the BDDTS
marked bold and green. Its construction is done as follows:

« To retrieve values for the global variables of the input and
output guard, respectively, we assume that the switch with
gate !read&printg,y has additional interaction variable sjl
and gate !read&printcomplete has interaction variable pjl.

o The value for the controller job is provided via interaction
variable cj in the first switch, and then used to initialize
local variable CJ.

« We conjoin sjl = SJL to the condition of the first switch
to express that the provided value sjl from the system for
the scheduled jobs is the same as global variable SJL.

o We conjoin pjl = add(cj, PJL) to the condition of the
last switch. This expresses that after the assignment
PJL := add(CJ, PJL), the value of pjl provided by the
system should equal the global variable PJL.

« We conjoin the input guard with the condition of the first
switch, and the output guard with the last switch, where
the global variables are substituted by their respective
interaction variables. This way the guards are checked
on the actual values of the system.

Continued testing approach. In this approach, we do not
assume that we can obtain values for global variables from the
system via the test interface, as in the other approaches. We
only assume that the first switch has interaction variables for
obtaining values to initialize local variables because, without
a value for local variables, we cannot construct an executable
test. Instead of adapting the test interface, we assume that the
BDDTS can be extended with additional switches such that in
the continuation of the test it can somehow be checked whether
the values of the global variables fail to match the state of the
system, in which case a guard must have been violated. For
example, techniques such as distinguishing sequences could be
investigated for this [12]. As a best-effort approach, the input
and output guards are conjoined with the conditions of the first
and last switch. For any global variable with no corresponding
interaction variable, we just use the global variable itself.
Hence, if a switch provides no interaction variables to obtain
values for global variables, the evaluation of the guard is



[true]

? submit < jf, sm >

[if.id=JF.id A sm=5M]

lappend < cj, sjl »
[cj.type=IT A sjl=SILA
JT=getlobType(SM} ]
CJ =cj
SIL = add(CJ, SIL)

[ls_m_l\st(CJ SIL) A Cl.type=IT]

(a) Scenario 1

!printgare < cj >
[cj.id =CL.id A cj.state= Printing]
Cl.state:=cj.state

[is_in_list{Cl, SIL ) A Cl.type=Production]

[is_running(C)]

1printeomplete < €1 >
[cj.id=Cl.id A\ ¢cj.state=Completed]

Cl.state:=cj.state
E PJL:=add(CJ,PJL)

[is_in_list(CJ,PIL)]

(b) Scenario 2

? restart<c>

[e=C]

PlL:=empty(PJL)
[is_empty(PIL)]

(c) Scenario 3

Fig. 2: BDDTSs translated from IBDD terms in

| ?check

sil

élretrleve ji<sil >
v [sil=siL]

Q' choose,; < cj >

} [is_in, Ilst(q SJL) A cj.type=Production]

Cli=cj

!printgeary < ¢j >
[cj.id=Cl.id A cj.state=Printing]
Cl.state:=cj.state

printeomplere < € >

[cj.id=Cl.id A\ cj.state=Completed]
Cl.state:=cj.state,
PIL:=add(CJ,PIL)

Pcheck,;

E ! retrievey; < pjl >
E [pil=PIL Ais_in_list (C), PIL}]

Fig. 3: Scenario 2 test model with special gates

'read&printg,,. <sjl,cj >

[sjl=SIL A

is_in_list(cj, sjl ) A cj.type=Production A
cj.state= Printing]

Cl:=cj,

Cl.state:=cj.state

'read&printeompiece < Pil €i>

[cj.id=CLid A

cj.state=Completed A\ pjl=add(cj, PJL) A
is_in_list (cj, pjl)]

Cl.state:=cj.state,

PIL:=add(CJ,PIL)

Fig. 4: Scenario 2 test model with interaction variables

merely a validation of the model itself, and the continuation
of the test case is assumed to establish the truth of the guard.

shows the STS constructed with this approach
from the BDDTS of [Figure 2b] In the STS, the input guard is
checked in the condition of the first switch, using the available
interaction variable c¢j and global variable SJL. The output
guard is checked in the condition of the last switch. However,
because CJ is actually added to PJL in the switch assignment,
in the condition we substitute PJL by the right-hand side

! printgeaye < cj >

[is_in_list{cj , SJL) A cj.type=Production A
cj.state=Printing]

Cli=cj,

Cl.state:=cj.state

!printmmp,etE <cj>

[cj.id=Cl.id A cj.state=Completed /A
is_in_list (cj, add(cj,PJL)}]
Cl.state:=cj.state,

PiL:=add(CJ,PIL)

M

Fig. 5: Scenario 2 test model with continued testing

add(CJ, PJL), and (simultaneously) CJ by interaction variable
¢j that provides the actual value of the controller job.

VIII. RELATED WORK

There have been numerous approaches trying to formalize
natural language requirements. Some like [13][14] propose
refining informal requirements to formal specification. Some
use rigorous requirements languages like in [[13]. For UML,
several methods have been introduced to make the specifica-
tions formal [16] [17]]. There is also some work on validating
formal models with informal scenarios [19].

BDD scenarios as informal specifications are not sufficient
for automatic test generation due to ambiguity and incom-
pleteness [20]]. They need to be mapped or translated into
a format that makes them suitable for testing. In [21]], the
authors extend BDD scenarios using annotations to represent
the required information for testing and provide a framework
based on Cucumber to implement and run tests. [.K.Raharjana
et al. developed a tool that generates a mapping table from
BDD language to an executable test code in the codeception
framework. The previous two approaches do not have a formal
translation as we do from IBDD to BDDTS, then STS, and
then test case. In [23], they merge testing and formal verifica-
tion by consolidating test scenarios and formal properties into
a single human-readable document.

Al also plays a role in translating scenarios. In [24] they
extract the required information from scenarios and generate
application code using machine learning models. In [10], they
use NLP to semi-automatically extract the code and step



definitions from scenarios, and in [25] Neural Network based
models are used for metamorphic testing. While Al has its
strengths in various natural language processing tasks, careful
use, and manual checks are required for making correctness
claims, while the formal structure of BNF makes it a reliable
choice for the translation of BDD scenarios.

UML-based methodologies for automatic generation of ac-
ceptance tests in the form of Gherkin scenarios are provided
in [26] and [27]. On the other hand, in [28]] and [9], UML
models are built from BDD scenarios. However, just like BDD
scenarios, UML diagrams might be ambiguous as they lack
precise formal semantics. We address this by formalizing the
scenarios into IBDD.

IX. CONCLUSION AND FUTURE WORK

In this paper, we integrated the BDD and MBT approaches
for the automatic generation of test cases. Ambiguity and lack
of formal semantics in BDD scenarios and the complexity of
formal models in MBT are two of the many reasons behind this
integration. Concretely, we defined an intermediate language
(IBDD) to fill the gap between textual BDD scenarios and
formal BDD Transition Systems. IBDD provides the missing
or implicit information required for correctness and precision.
IBDD is then translated to BDDTS. We also illustrate three
approaches to transform BDDTSs into STSs, from which we
can automatically generate test cases [].

For future work, we plan to complete the process of
In particular, we consider: firstly, providing support for
translating textual scenarios to IBDD. This step relies on spe-
cific prerequisites, such as the necessity for BDD scenarios to
adhere to a predefined structure. Secondly, we will investigate
how to define different types of BDDTS composition formally.
This way we will get complex (i.e., non-sequential) BDDTSs,
such that the strength of MBT can be fully exploited for
extensive test generation. Thirdly, we plan to provide formal
definitions for the translation from BDDTSs to STSs, and
investigate which translation approach is applicable in what
type of testing context. Finally, we aim to evaluate the whole

approach of on a large case study.
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