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Abstract—Model-based testing (MBT) offers the possibility of
automatic generation and execution of tests. However, it is not
yet widely used in industry due to the difficulty in creating
and maintaining models. On the other hand, Behavior Driven
Development (BDD) is becoming more popular in the agile
development process to achieve a common understanding of the
system under development among stakeholders and to automate
testing. However, BDD scenarios are written in human language
and are usually not precise enough. Moreover, tests extracted
from BDD scenarios are too short and incomplete; they only
cover a very small part of the system. Our goal is to combine
these two approaches to benefit from the usability of BDD and the
test automation capabilities of MBT. In this paper, we first define
a formal model of scenarios that we call BDD Transition Systems,
second, we create more complete tests by composing scenarios
(model composition), and finally, we generate and execute tests
automatically. We demonstrate the applicability of this approach
in a real-world example: an industrial printer.

Index Terms—Behavior-Driven Development, Model-Based
testing, Compositional testing

I. INTRODUCTION

Modern software systems are ever-growing in size and
complexity, offering an ever wider range of functionalities,
and increasingly connecting to their environment. Systematic
testing plays a major role in getting confidence in the quality
of such systems. Software testing, however, is often an error-
prone, expensive, and time-consuming process. Estimates are
that testing consumes 30-50% of the total software develop-
ment costs. The tendency is that the effort spent on testing
is still increasing due to the continuing quest for better
software quality, and the ever-growing size, complexity, and
connectivity of systems. The situation is aggravated by the fact
that the complexity of testing tends to grow faster than the
complexity of the systems being tested, in the worst case even
exponentially. This may seriously hamper the testing of future
generations of software systems, implying that smarter, more
effective, and more efficient testing methods are required.

a) MBT: Model-Based Testing (MBT) is one of the tech-
nologies that are propagated to meet these testing challenges.
MBT is a form of black-box testing where the model serves
as a specification for the system under test (SUT), prescribing
the behaviour that the SUT shall, and shall not exhibit. The
main advantage of MBT is that it enables the automated,
algorithmic generation of large amounts of valid test cases
including corresponding expected results. MBT, in particular,
MBT using formal models, originates from research on formal

methods and testing. Nowadays, a reasonable number of
commercial and open-source tools for MBT are available, but,
despite its solid foundations and promises of automated test
generation, there is no widespread use of MBT in the industry,
yet.

The main bottleneck that prohibits the broad application of
MBT is the construction and availability of the appropriate
behavioural models for MBT. Firstly, there is some reluctance
against investment in making models, as companies see this as
having to develop and maintain yet another software artifact.
Secondly, mastering the art of behavioural modeling requires
abstract thinking, education, and experience that is not always
available. Thirdly, the information necessary to construct a
model, in particular for legacy, third-party, or outsourced sys-
tems or components is not always (easily) available. And last
but not least, the specialized languages in which MBT models
are expressed do not excel in readability and understand-
ability for non-experts, such as product owners, customers,
and other stakeholders. This complicates communication with
these stakeholders, and it does not facilitate obtaining feedback
and validating MBT models, i.e., getting confidence that the
model really models what was intended.

b) BDD: Behaviour Driven Development (BDD) is an
agile approach to software development. A key goal of BDD is
to foster communication and shared understanding of what the
software under development should do, among all stakeholders
of the product such as developers, product owners, product
analysts, testers, customers, and business developers [1] [2],
[3].

In the BDD approach, three activities are distinguished:
discovery, formulation, and automation. During discovery, the
required behaviour of the software or feature under devel-
opment is explored in structured conversations by all stake-
holders involved, by constructing examples of the required
behaviourr. Such explorations are sometimes referred to as
’three amigos’ sessions. In the formulation phase, the examples
are documented in structured natural language, in such a way
that they are understandable and shared by all stakeholders,
which facilitates validation. This is also called specification
by example. The most popular style to write these documented
examples, called scenarios, is the Given/When/Then style used
in Gherkin language. There are other styles like Context/it
in RSpec [4] and tables [5]. The documented examples are
written in such a way, that during automation phase they can



be transformed into executable test cases. These can then be
used to verify whether the developed software indeed satisfies
the requirements documented in the scenarios. The collection
of scenarios is also referred to as living documentation.
Automation of Gherkin scenarios is supported by many tools,
e.g., Cucumber [6] and SpecFlow [7].

Unlike MBT, BDD does not originate from research but
from software engineering practice. Nowadays, many software
companies use some form of BDD approach to explore,
specify, and automate tests for software features.

c) BDD and MBT: Among the strong points of the BDD
approach are the collaborative exploration of the requirements
by making examples, the documentation of examples in sce-
narios expressed in structured, readable natural language, and
the readability and understandability of scenario specifications
by all stakeholders. The lack of such a shared understanding
of readable specifications is a weak point of current MBT
approaches.

On the other hand, MBT provides a solid foundation in
the form of formal semantics and well-defined testing the-
ory, leading to algorithmic test generation of many, long,
diversified, and valid tests, together with test result analysis.
In addition, the formal underlying theory enables reasoning
about concurrency, non-determinism, model coverage, and
compositionality. Most of these aspects are weak points of
BDD. There is no underlying theory providing formal se-
mantics to scenarios, the size and number of scenario-based
test cases are limited, i.e., they usually, and deliberately, test
one particular aspect, and not a combination of aspects or
features. Concurrency, non-determinism, and model coverage
are not considered. Composing scenarios is sometimes used,
but in a very informal, ad-hoc, and sometimes ambiguous
way, for example, two scenarios with overlapping Given-
conditions sometimes mean that a choice can be made, and
sometimes that both should be considered concurrently or
conjunctively. Also, the infamous Gherkin And-keyword can
have different meanings: sometimes it means sequence, some-
times concurrency, and sometimes logical and (conjunction).
Additionally, reaching a state that satisfies a particular Given-
condition can be difficult. This is currently completely left to
the implementer of the test code in a so-called step-definition.
Then it might be, however, that laying some other scenarios
head-to-tail will easily reach such a state. There is no way
to reason about such compositions of scenarios in the BDD
approach. In MBT theory, this corresponds to the standard
problem of reachability analysis.

Given this analysis of the strong and weak points of BDD
and MBT, the goal of our research is to combine them in
such a way that we obtain their complementary strengths.
Basically, this means that we combine the exploration and
specification construction in the form of Gherkin scenarios
from BDD, with the test generation, compositionality, and
formal reasoning from MBT. We aim to accomplish this by
transforming Gherkin scenarios into small models in a formal
MBT modeling language. In this way, we can use the discovery
and formulation phases of BDD to construct scenarios that

are readable and understandable. Moreover, after transforming
these scenarios into these small models in the MBT formalism,
we can compose these small models into larger models, we
can use reachability analysis to reach particular Given-states,
and we can generate many, long, diversified, and valid test
cases that test different aspects and combined features. To
the best of our knowledge, there is no research found in the
literature that automatically generates, composes, and executes
tests from BDD scenarios based on a formal model with formal
semantics.

In this paper, we define BDD Transition Systems (BDDTS)
as Symbolic Transition Systems (STS) with preconditions
(for Given steps) and postconditions (for Then steps). These
BDDTS are our formal MBT modeling language. STS is a
well-defined formalism for MBT [8], that supports formal
reasoning, composition, and test generation [9], [10]. We show
how scenarios in Given/When/Then-style are transformed into
simple BDDTSs using a real-world example of an industrial
printer. Then we elaborate on how these simple BDDTSs can
be composed into larger BDDTSs, which are the basis for test
generation following [10].

We concentrate on the sequential composition of BDD
scenarios and show this by example, that is the post-condition
of one scenario (Then-step) enables the pre-condition of the
next scenario (Given-step), where ’enables’ means logical
implication. Many other forms of composing scenarios, or,
actually, composing BDDTSs generated from scenarios, are
possible, e.g., the choice between scenarios (disjunction),
concurrent scenarios, conjunctive scenarios, and sequential
composition if there is no implication but just overlap, or
interrupting scenarios. These compositions and the full formal
definition of sequential composition will be considered in
future papers.

d) Overview: The next section introduces BDD scenarios
in general, the running example of the industrial printer, and
the printer’s scenarios. Section III defines the formalism of
BDDTS, after which Section IV illustrates the translation
from BDD scenario to BDDTS using the real-world industrial
printer example. Section V discusses the composition of
BDDTSs and test generation from the composed BDDTS.
Section VI and VII present related work, conclusions, and
future research.

II. BDD SCENARIOS

This section defines the structure of the BDD scenarios and
provides a real-world industrial example of a set of scenarios.

A. Structure of BDD scenarios

The structure of BDD scenarios given below is adapted from
[3]. In Section III, we will give a definition of a formal model
for BDDs corresponding to the below definition.

A Behavior-Driven Development scenario describes a small
function of the system. It describes some user-visible behavior
of the system. This user can be a human user, another
component in the same system, or another system interacting
with the system. We refer to all these users as the system
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environment or simply environment. We will call the system
being described with the scenarios the System Under Test
(because we will generate test cases), or just the system. A
BDD scenario consists of three parts: Given, When, and Then.

Given specifies the required system state that is a precon-
dition for the next step (When).

When describes an action or a sequence of actions. Either
the environment or the system performs such an action.
The action has an effect or consequence on the party not
performing the action.

Then can be described in three different ways
• it describes the action the system does after the When

step, or
• it describes the state in which the system ends up finally,

or
• it describes both, i.e., the action the system performs after

When, and the final state.
We note that if Then only specifies the action, there is still an

implicit final state, namely the state reached after performing
the action.

B. Printer example
We now introduce the running example of this paper: a

printer. The printer works as follows. The operator starts
by submitting a job file using a submission method. Based
on the submission method, the printer adds a controller job
to the print queue called scheduled jobs. At the time the
controller job is added to the scheduled jobs the printer starts
printing. If the operator does nothing, the printer continues
and completes printing. But, while the controller job is being
printed the operator may pause printing. A paused job may be
resumed, i.e. the printer continues printing the job from the
scheduled jobs, or moved to another queue called the waiting
jobs. Waiting jobs are not printed. The operator can move the
controller job from the waiting jobs to the scheduled jobs to
start printing the job from scratch.

To describe this flow with BDD scenarios, the flow is di-
vided into several scenarios that describe a small functionality.
Below, we write out all these BDD scenarios.

C. Scenarios
Scenario 1: A controller job is added to the scheduled jobs
after a job is submitted

• Given a Job file
• When the operator submits the Job file with

⟨Submission method⟩
• Then the printer adds a new Controller job to the sched-

uled jobs
• And the Controller job is of type ⟨job type⟩

The table below shows the values allowed for Submission
method in combination with job type:

Submission method Job Type
LPR Production job
IPP Production job
JMF Production job

Socket Streaming job

Scenario 2: A controller job is moved to the printed jobs the
moment printing completes

• Given a controller job is in the scheduled jobs
• When the printer starts printing the controller job
• And the printer completes printing the controller job
• Then the controller job is in the printed jobs

Scenario 3: There is a hard copy of the controller job after
completing the printing of the controller job.

• Given a controller job is in the scheduled jobs
• When the printer starts printing the controller job
• And the printer completes printing the controller job
• Then there is a printed output
• And the printed output is a hard copy of the controller

job

Scenario 4: While a job is being printed, it can be paused

• Given a controller job is printing
• When the operator pauses the printing of the controller

job
• Then the controller job is paused

Scenario 5: A job that is paused can be resumed to be printed

• Given a controller job is paused
• When the operator resumes printing the controller job
• then the controller job is printing

Scenario 6: A controller job that is paused and moved to the
waiting jobs before it completes, is not moved to the printed
jobs

• Given a controller job is paused
• When the operator moves the controller job to the waiting

jobs before the printer completes printing
• Then the controller job is in the waiting jobs
• And the controller job is not in the printed jobs

Scenario 7: A controller job that is in the waiting jobs can be
moved to the scheduled jobs

• Given a controller job in the waiting jobs
• When the operator moves the controller job to the sched-

uled jobs
• Then the controller job is in the scheduled jobs

III. A FORMAL MODEL FOR BDD SCENARIOS

In this section, we define a formal model, namely a tran-
sition system, for BDD scenarios. This transition system will
need to store the data elements of a scenario, e.g. the controller
job of the printer example. These data elements are defined in
the next section, and after that, we define the BDD transition
system itself.

A. Data elements

In this section, we introduce standard programming con-
cepts like variables, terms (i.e. expressions), types, and as-
signments. For a complete, formal definition of data elements,
we refer to [10].
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a) Syntax: Terms consist of ground terms, e.g., true ,
variables, e.g., ‘x’, and operations, e.g., ‘∧’. Let X be a
set of variables. The set of terms consisting of variables X
is denoted as T (X). Ground terms are the terms without
variables, denoted as T (∅).

Terms have a type, e.g. term true ∧ x has type Bool. With
true ∧ x : TBool({x}) we denote that term true ∧ x is of
type Bool and contains (at most) variable x. We assume that
there is a function type mapping any term to its type, e.g.
type(true ∧x) = Bool. For any set of variables X , we define
T (X) to only contain well-formed and well-typed terms, i.e.,
the non-well-formed term true∧ and the non-well-typed term
4 ∧ 3 are not in T (X).

An assignment assigns a term to a variable, e.g. in x :=
x+ 1, term x+ 1 is assigned to variable x. Given some sets
X and Y of variables, T (Y )X denotes any set of assignments,
where each term t ∈ T (Y ) is assigned to a variable x ∈ X .

b) Semantics: A valuation ϑ(X) is a function assigning
values to variables X . Ground terms have a value corre-
sponding to their syntax, e.g. the value of true is denoted
as true. A term evaluation ϑeval(X) extends valuation
ϑ(X) to evaluate terms containing variables. For example, if
ϑ(x) = false, then ϑeval({x})(true ∧ x) = false.

Given a term evaluation ϑeval(Y ), a set of assignments
A ∈ T (Y )X is evaluated to a valuation ϑ(X). Here, ϑ(X)
is defined as the evaluation of each assignment x := t ∈
A, such that ϑ(X)(x) = ϑeval(Y )(t). For example, given
ϑ({y})eval(y+1) = 3, assignment set {x := y+1} evaluates
to ϑ({x}) with ϑ({x})(x) = 3.

B. BDD transition systems
We provide the definition of a Symbolic Transition System

inspired by [10].

Definition 1. A Symbolic Transition System is a tuple S =
⟨ LOC, l0,V, i, I,Λ,→ ⟩, where

• LOC is a set of locations.
• l0 ∈ LOC is the initial location.
• V is a set of global variables. They are global and

accessible in the entire transition system.
• i ∈ T (∅)V is the initial assignment of the global vari-

ables.
• I is a set of interaction variables. We assume V ∩ I = ∅

and set V ar =def V ∪ I. They are called interaction
variables as they represent the data interaction associated
with a switch (see below). Variables (Var) have types,
i.e. either basic data types like Bool, Int and String
or composite datatypes with different fields of different
types.

• Λ is the set of gates. We define Λ = Λi∪Λo where Λi,Λo

are the sets of input and output gates, respectively.
• →⊆ LOC × Λ× I∗ × TBool(V ar)× T (V ar)V × LOC

is the switch relation.
In a switch (loc, λ, f0...fk, φ, ρ, loc

′) ∈→ the elements
are called (source) location, gate, interaction variables,
guard, assignments, and (destination) location, respec-
tively.

A BDD transition system (BDDTS) extends the definition
of STS with a few additional elements: it is a tuple B =
⟨S,Lg, IG,OG, guardOfLoc ⟩, where

• S is the Symbolic Transition System
• Lg ⊆ LOC is the set of goal locations.
• IG : TBool(V) is the input guard of the BDDTS, denoting

the pre-condition of the initial location.
• OG ⊆ TBool(V) is the set of output guards denoting the

post-conditions of the BDDTS.
• guardOfLoc : Lg → OG is a function mapping goal

locations to their corresponding output guard.

C. Semantics of BDDTS

The semantics of an STS is formally defined in [10]. With
respect to semantics, BDDTS differs from STS by the added
input guard and output guards on locations. In this subsection,
we provide a short explanation of the intuition of the semantics
of STS and BDDTS.

Initially, the global variables of an STS have the values
as determined by initialization i, and the current location in
l0. We note that the values of any global variable can be
obtained in any location. Next, we can execute an enabled
switch. Let (loc, λ, f0...fk, φ, ρ, loc′) be a switch of the STS.
This switch is enabled if the current location is loc, and
the evaluation of guard φ is true for current values of the
global variables and the values of the interaction variables.
The values of the interaction variables are determined by the
environment (if λ is an input gate) or by the system (if λ
is an output gate). Execution of an enabled switch results
in evaluating the assignments ρ of the switch. This way,
global variables may be assigned new values. Additionally,
the current location becomes loc′. As an example consider the
STS of Figure 2. Initially, we are in location 0 and suppose
that for Job File (JF), JF.id = 0 and the input guard is(JF )
evaluates to true. Suppose that we wish to execute the
switch with input gate ?submit. By letting the environment
choose id = 0, we have that guard id == JF.id evaluates
to true, so we may indeed execute this switch. Then the
assignment for Submission Method (SM), SM := sm is
executed accordingly. The next switch from location 1 to 2 can
then be executed similarly, though the system now chooses the
values of the interaction variables. For example, if the system
uses controller job cj with cj.type == ”Streamingjob”,
the environment should have chosen sm := ”Socket” in the
previous step, to enable the execution of the switch to location
2. If so, the assignments are executed, we reach location 2,
and we can check whether the output guard really holds (as
will be explained in Subsection V-B).

IV. BDD SCENARIO TRANSLATION

In this section, we define how to convert a BDD scenario
written in Given-When-Then style to a BDD transition system.
Currently, we do this conversion manually. We restrict our-
selves to what we explained to be a BDD scenario in section
3. We identify the elements of the BDD transition system from
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Figure 1. Partial Specification of printing a job file in a printer only showing switch gates and output guards of composed BDDTS

the scenarios. We use Scenario 2 of Subsection II-C to explain
the translation.

From the Given step of Scenario 2 we extract the pre-
conditions for the scenario. This precondition describes the
required state of the system. We need two elements: the global
variables(V) and the input guard(IG).

- Given a controller job is in the scheduled jobs

In this scenario, the controller job (CJ) and the scheduled
jobs (SJ) are the global variables. We write global variables
in capital letters. The fact that the controller job is in the
scheduled jobs is the condition to be checked, so we define
operation is in list, and define IG = is in list(CJ, SJ)
as the boolean term defining the input guard of the initial
location.

From the When step we extract the actions performed by
the system or the environment. Each action is translated to
a gate. If When describes multiple actions, conjuncted by
and, we build a sequence of switches for these actions. If
the actor is the environment, we use an input gate, and if
the actor is the system we use an output gate. In addition,
we look for interaction variables and global variables. The
interaction variables update the value of global variables with
assignments.

- When the printer starts printing the controller job
- And the printer completes printing the controller job

Here, printstart and printcomplete are both output gates and the
controller job is the global variable CJ. The printstart gate is
on the switch from the initial location 0 to location 1 and
the printcomplete gate on a switch from location 1 to location
2. The guards are defined on interaction and global variables
to ensure the conditions on data are satisfied and the value
of global variables are updated in the assignment. There are
two interaction variables id,state for gate !printstart, the id is
used in the switch guard to make sure the printer is printing
the requested controller job and state is used to check if the
state of the job is changed to ”printing” after printstart. The
interaction variable state is then assigned to the state field of
the global variable CJ.

In the Then step, we look for the global variables and output
guards:

- Then the controller job is in the printed jobs.
controller job and printed jobs are global variables CJ, PJ, and
is in list(CJ, PJ) is the output guard.

We note that the information we extract from a single
scenario might be insufficient for the model. We obtain com-
plementary information from the related scenarios in the set of
existing scenarios. Scenarios 2 and 3 are examples of this case.
There are two main outputs from the system when the printing
is completed: 1) The controller job appears in the printed jobs
and 2) there is a hard copy of the controller job. These are
defined in separate scenarios but they are both needed to have
a sufficient set of variables for the action !printcomplete. To
treat ambiguities in scenarios, we add extra information to the
model. For example, the relation between Printed output (PO)
and the corresponding Controller job (CJ) in scenarios 2 and
3 is defined by storing the id of CJ in PO, PO.id cj==CJ.id.

In Figures 2-8 you find the BDDTS for scenarios
1-7. The BDDTS of Scenario 1 is defined as B1 =
⟨⟨LOC, l0,V, , i, I,Λ,→ ⟩, Lg, IG,OG, guardOfLoc ⟩
where:
LOC = {0, 1, 2}
l0 = 0
V = {JF, SM, CJ,SJ }
I = { jf, sm, cj, sj}

Λi ={?submit}
Λo={!add}
Lg={2}
IG = is(JF)

→= { (0, ?submit, ⟨ jf, sm⟩, id==JF.id, SM:=sm, 1),
(1, !add,⟨ cj, sj⟩, ϕ1

1 ,{CJ:=cj, SJ:=append(CJ,SJ)},2) }

i= {JF:Job(id:=0), SM:=null, CJ:=null,
SJ:=Queue(name=”Scheduled Jobs”, elements= EmptyList))}
OG = is in list (CJ , SJ) ∧ (CJ.type==”Production Job” ∨
CJ.type ==”Streaming job”)

V. COMPOSITION AND TESTING

A. Pre-post condition composition

In this section, we explain by example how to compose
BDDTS and then extract test cases from this composition.

1ϕ1 is the guard on the switch from location 1 to 2, shown in Figure 2
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Figure 2. BDDTS for scenario 1

Figure 3. BDDTS for scenario 2

Figure 4. BDDTS for scenario 3

Figure 5. BDDTS for scenario 4

Figure 6. BDDTS for scenario 5

Figure 7. BDDTS for scenario 6

Figure 8. BDDTS for scenario 7

We use a pre-post-condition composition, such that the input
guard of scenario B is satisfied by an output guard of scenario
A. The composition composes BDDTS A and B sequentially,
by merging the respective goal location of A with the initial
location of B. Specifically, we define composability of two
BDDTS as follows:

Let A and B be two BDDTS, where l is a goal location of
A, and IG is the input guard of B. Then B is composable
with A in l if the output guard of l in A implies the input
guard of B, i.e. for all valuations ϑ(VA ∪ VB), we have that
ϑ(VA ∪ VB)eval(guardOfLoc(l) =⇒ IG) = true.

Take scenarios 1 and 2 in Figures 2, and 3 as examples. The
input guard of scenario 2 is is in list(CJ, SJ), and the output
guard of scenario 1 is is in list(CJ, SJ) ∧ (CJ.type ==
”ProductionJob” ∨ CJ.type == ”StreamingJob”). The
implication holds since the input guard of scenario 2 is the
left term of the conjunction of the output guard of scenario 1.
Another example is that the input guard of scenario 4 is the
same as the output guard of scenario 5 in Figures 5and 6.

We now explain the pre-post-composition by example and
defer giving a general definition to future work. We compose
the BDDTS of all scenarios of Subsection II-C. The end result
is shown in Figure 1. We start with scenario 1, as we assume
the input guard of this scenario to be true in the initial location
of a printer. Scenario 1 is composable with both scenarios 2
and 3, because the output guard of scenario 1 is stronger than
both input guards. We pick scenario 2, and merge the goal
location of scenario 1 with the initial location of scenario 2,
i.e. the printstart switch can now be taken from the goal location
of scenario 1. We choose to set the output guard of the goal
location to be the weaker input guard of scenario 2 (see later
in example why).
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We note that the BDDTSs of scenarios 2 and 3 are the
same, except for the output guard of the last location. We
can therefore conjunct the output guard of scenario 3 to goal
location 2 of scenario 2, which is now location 6 in the
composition.

Location 3 of the composition is the same as the input guard
of scenario 4, so trivially, scenario 4 can be composed now.
We merge scenario 4 with location 3 of the composition. Since
the output guard of location 3 is the same as the input guard
of scenario 4, we just omit the input guard.

Similarly, the output guard of location 4 is the same as the
input guard of scenario 5, so we add it to the composition.
We note that the output guard of scenario 5 is the same as the
output guard of location 3 of the composition, so we merge
the respective locations such that the switch with the printresume
gate loops back to location 3.

Similarly, scenarios 6 and 7 are added. The output guards
of scenario 7 and location 2 are the same, so we make the
switch of scenario 7 reach location 2. Note that this would not
have been possible if we didn’t weaken the output guard of
location 2 to only be is in list(CJ,SJ), since the output guard
of scenario 7 would then be weaker than the output guard of
location 2, such that merging would violate composability.

We have the following remarks on composing BDDTS:

• The precondition of a BDD scenario can be inconsis-
tent with the rest of the scenario (e.g. by mistake).
Translation to BDDTS then preserves this inconsistency.
For example, if the input guard of scenario 2, that the
controller job is in the scheduled jobs, would be omitted,
this could imply that the state of this job cannot be
‘printing’, such that the guard of the switch with the
printstart gate is violated. Hence, this should be checked
before composition, as composition relies on the validity
of input guards.

• Similarly, a mistake may be present in the output guard,
e.g. the guard could be unsatisfiable. For example, if
location 1 of scenario 4 would have output guard CJ.state
== ”printing” this is inconsistent with the assignment
CJ.state=”paused” of the previous switch. Composing a
BDDTS in a goal location with an unsatisfiable output
guard is pointless, and should therefore be avoided by
checking the satisfiability of output guards beforehand.

• Output guards could be strengthened by including the
restrictions that are imposed by previous guards and
assignments of switches (i.e. path condition in [10]),
allowing more BDDTS to be composed in the respective
goal location.

• There are edge cases where composition with weakening
the output guard and merging locations may lead to
inconsistencies, comparable with the discussed incon-
sistencies for input guards. However, weakening is a
preferred property for pre-post-composition, as it allows
more scenarios to be composable.

B. Testing

To generate test cases from BDDTS, we use the test gener-
ation algorithm as described in [10]. This algorithm generates
test cases that reach all switches of an STS. Specifically, this
means that all scenarios will be executed, and all output guards
will be checked as part of a test case. To use the algorithm, we
need to translate a BDDTS to an STS. Specifically, we need
to encode the input guard and output guards in an STS. We
note that, according to the above composition, we may assume
that the initial location of a BDDTS corresponds to the initial
location of the system being tested. Therefore we do not need
to check the input guard as the variables are initially assigned
and the input guard holds. Hence, we only need to check the
output guards in test cases.

We call the STS extracted from the BDDTS the test model.
In this test model, we substitute the output guards in every goal
location of the BDDTS by two special switches with gates
?check and !retrieve. We assume that we can obtain values of
global variables from the system. By the ?check gate the tester
requests the values of the variables used in the output guard,
from the system. This is done by providing a value, via an
interaction variable, that identifies the variable we ask for, e.g.
the id of a controller job. The system can then respond through
the interaction variables of the !retrieve switch, by providing
the actual value of the requested variables, e.g. a controller job
with fields id=0, type=”Production Job”, and state=”printing”.
The switches of the check? and receive! gates are encoded as
a loop from and to the goal location.

Figure 9 shows the test model of scenario 1. Compared to
its BDDTS in Figure 2, the ?check and !retrieve switches and
the intermediate loop location are added with dashed lines.
In the ?check switch we use the interaction variables to pass
identifiers for retrieving the controller job and scheduled jobs
list from the system. In the !retrieve switch we then check with
the guard that the returned values have the same identifiers and
adhere to the condition specified by the output guard.

In Subsection V-A we noted that the user may write a
post-condition for a BDD scenario that cannot be satisfied
for any value of global variables. For example, if the output
guard of location 4 ( i.e. scenario 4) would have been CJ.state
== ’printing’, this would be inconsistent with the assignment
CJ.state=”paused” of the previous switch printpause. As a
consequence, the test generation algorithm of [10] will then
not be able to generate a test that reaches the receive! switch
of this output guard. Hence, this way we are able to notice
this inconsistency and notify the user of their mistake.

With the algorithm of [10] we could obtain a test case for
scenario 1 that reaches the !retrieve gate. The gates and values
for a successful execution would look as follows:
?submit ⟨ Job(id=0), JMF ⟩
!add ⟨ CJob(id=0, type=‘Production Job’, state=‘ready’),
Queue(name=‘Scheduled Jobs’, elements= EmptyList) ⟩
?check ⟨0, ‘Scheduled Jobs’⟩
!retrieve ⟨ CJob(id=0, type=‘Production Job’, state= ‘paused’)
, Queue(name=‘Scheduled Jobs’, elements=List(id=0) ⟩
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Figure 9. Test model for scenario 1

VI. RELATED WORK

We divide related work into four categories: model-based
approaches for scenarios, model-based testing with STSs,
testing based on BDD, and model-based testing with BDD.

a) Model-based approaches for scenarios: There is quite
a history of (semi) automatic model generation from scenarios
like [11] [12] [13] In these papers, scenarios are expressed as
sequence diagrams (SD) and then converted to state charts.
Due to the lack of precise formal semantics for UML dia-
grams, in [11], they use extra tooling like OCL, for defining
variables and Finite State Machines (FSM), such that this extra
information enables converting SDs to state charts and merge
scenarios. In [12] and [13] FSMs are used as well. In [14]
[15] they focus on testing, and transform UML models into
Labelled Transition systems, to add precise formal semantics,
similar to those above.

In comparison, we use BDD scenarios, written in a struc-
tured text format. The text format has made it popular among
non-technical stakeholders in industry. BDD scenarios focus
on the behavior of the SUT, with steps that specify pre-
conditions, actions, and expected behavior. These scenarios
describe how the system should behave in response to various
inputs and conditions while SDs only specify the sequences
of actions. However, just like UML, BDD scenarios might
be ambiguous. We address this by formalizing them with
BDDTS. STSs are better suited for modeling complex systems.
LTSs and FSMs lack the notion of data. Although in our
approach scenario translation is currently manual, automation
is possible by e.g. using parsers as in [16].

b) Model-based testing with STSs: In [9], Frantzen
et al. introduce Symbolic Transition Systems, that extend
Labelled Transition Systems with data. They provide a test
algorithm based on the iocoF relation. [10] is an extension of
Frantzen’s work that provides robust test selection based on
switch coverage. In this paper, we built on the STS definition
and test generation algorithm of [10].

c) Testing based on BDD: ”The difficulty of writing
system-level test cases” is one of the challenges presented in
[17]. Our approach helps in this regard by model composition
and automatic generation of tests from BDD scenarios. In [18]
they combine testing and formal verification by integrating test
scenarios and formal properties in a single human-readable
document. Then they use the Cucumber [6] tool for testing
using the document. In contrast, we convert scenarios into
STSs, which are per se formal models, and generate tests from
the model. In [19] they provide a technique for regression
testing in BDD. Their technique finds and selects the test
code that is likely to be affected and needs to be modified
for a change in the system. By composing scenarios leading
to the code change, we could achieve the same goal and have
high traceability between the tests and scenarios. In [16], the
authors introduce a semi-automatic approach for extracting the
code skeleton and step definition from a single scenario. They
create class and sequence diagrams in a semi-automatic way
and they have implemented this in the Cucumber tool. While
we currently do the translation from scenarios to BDDTS
manually, we focus on model (scenario) composition for a
more comprehensive set of test cases.

d) MBT with BDD: In [20], an MBT tool called Skyfire
is presented. Skyfire automatically generates Cucumber test
scenarios from UML state machine diagrams. The tests are
then generated by the Cucumber tool. A similar approach is
taken in [21]. They use UML diagrams to generate acceptance
tests in the form of sequences of Gherkin scenarios. Executable
test cases are then generated from these scenarios. This is
different from what we do. We convert scenarios to formal
models and generate tests from the model rather than the
scenarios. In [22] they provide technical integration of BDD
with the MBT tool Graphwalker and the Robot Framework,
but they provide no formalism. In [23], a combination of
acceptance test-driven development and model-based testing is
presented in some real-world projects. They conclude that both
approaches complement each other and increase test coverage.
In our work, we provide an intertwined approach to benefit
from both BDD scenarios and formal models. In [24] and [25],
the authors use BDD to automate the assessment of artifacts
throughout the development process. They use computational
ontologies to formalize the concepts used in scenarios and
generate test cases from ontology models, while we generate
tests from the formal BDDTS.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed an approach for automatic test
generation and execution of BDD scenarios. We introduce
a formal model for BDD scenarios: BDD transition system
(BDDTS). For a set of real-world BDD scenarios of an
industrial printer, we show how to translate BDD scenarios
into BDDTS, and how to compose these BDDTS, with respect
to the pre-and postconditions of scenarios. To automatically
generate test cases, we convert the composed BDDTS to a
Symbolic Transition System by adding special switches with
?check and !retrieve gates, for checking postconditions of
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BDD scenarios with the System Under Test. We use the test
generation algorithm from [10] to obtain test cases, such that
all scenarios are executed, and all postconditions are checked.
There are several directions for future work:

• Find a general, formal definition of pre-post condition
composition. This composition should allow the precon-
dition of a scenario to be weaker than the postcondition
of the scenario to be composed while preventing the
introduction of inconsistencies.

• Support a check and possibly provide a correction for in-
consistencies caused by the writer of a BDD. Also, BDD
postconditions can be strengthened by taking into account
the consequences of previous actions of the scenario itself
and other scenarios in the (partial) composition. This way,
more scenarios can be composed.

• In this paper, the composition is performed before test
generation and execution. However, the composition
could also be dynamic: scenarios are then composited
‘on the fly’ during test generation and execution. The
advantages are that test execution can be steered based
on past execution results and the tester’s current wishes.

• We provided our definition of BDD scenarios in Subsec-
tion II-A as we found most BDD scenarios are written
vaguely and not suitable for translation to BDDTS. The
next step is automatic correction and modeling of BDD
scenarios. This could be implemented in existing tools
like Cucumber and SpecFlow.

• Finally, a combination of pre-post-composition with other
forms of composition, like parallel composition, conjunc-
tion, and disjunction, should be investigated.
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